World Literature on Medicinal Plants from Pankaj Oudhia’s Medicinal Plant Database -26
World Literature
on Medicinal Plants from Pankaj Oudhia’s Medicinal Plant Database -26
World Literature on Medicinal Plants
Quoted/Consulted/Modified/Improved/Discussed/Used/Corrected in Pankaj Oudhia’s
Medicinal Plant Database.
1. Debra-Haire-Joshu, Management of Diabetes
Mellitus, Edn.2, Perspective of care across the life
span, 3. (1991)
2. Satoskar R.S., Bhandarkar S.D., Ainapure S.S.,
Pharmacology and Pharmacotheraputics, Edn.16,
Popular Prakashan,Mumbai, 874.(1999)
3. Nahar N., Traditional medicine, Edn.18, Oxford
and
OBH Publishing Co. Pvt. Ltd., New Delhi, 205-209,
(1993).
4. Smith and Reynard, Essentials of Pharmacology,
W.B. SaundersCompany, 588. (1995)
5. Davidson’s, Principles and Practice of Medicine,
Edn.15, Edited by Macleod, Edwards, Bouchier,
461.(1987)
6. David Nelson L, Michael Cox M., Lehninger,
Principals of Biochemistry, Edn.3,Worth Publisher,
NewYork,U.S.A., 883-884 (2000).
7. DebA.C., Fundamentals ofBiochemistry, Edn.7, New
central BookAgency (P) Ltd., Calcutta, 243 (1998).
8. Chatterjee T.K., Herbal options, Eastern Traders,
Calcutta, 9-16 (1997).
9. Davidson Mayer B., Diabetes Mellitus: Diagnosis
and treatment, Edn.2,A WileyMedical Publication,
JohnWiley& Sons, 1.(1986)
10. Resmi C.R., Antidiabetic effects of herbal drug
in
Alloxan-Diabetic Rats, Indian Drugs, 38 (6), 319.
(2001)
11. Kokate C.K., Purohit A.P. and Gokhale S.B.,
Pharmacognosy, Edn.27, Nirali Prakashan, Pune,
124.(2001)
12. Z.S.Hakim, PotentialAntidiabeticAgentsfrom Plant
Sources; Pharmacological Aspects, Indian J.
Natural Product. 11(1), 3 .(1995)
1. WHO Expert committee on diabetes mellitus:
second report, World Health Organ. Tech. Rep.
Ser., 646, pp.1-80 (1980).
2. Diabetes Mellitus: Report of a WHO Study
Group, World Health Organ. Tech. Rep. Ser.
727, pp. 1-113 (1985).
3. Mayfield J.: Am. Fam. Physician 58, 1355
(1998).
4. Li W.L., Zheng H.C., Bukuru J., et al.: J.
Ethnopharmacol. 92, 1 (2004).
5. Satyanarayana T., Katyayani B.M., Latha H.E.,
et al.: Phcog. mag. 2, 244 (2006).
6. Kamtchouing P., Sokeng D.S., Moundipa P.F.,
et al.: J. Ethnopharmacol. 62, 95 (1998).
7. Sokeng S.D., Kamtchouing P., Watcho P., et
al.: Diabetes Res. 36, 1 (2001).
8. Teonard L., Dimo T., Paul D., et al.: Afr. J.
Tradit. Complement. Altern. Med. 3, 23 (2006).
9. Watt G.: Periodical Experts: A Dictionary of the
Economical Products of India, p. 260, Cosmo
Publications, Delhi 1972.
10. Gupta R.K., Kesari A.N., Watal G., et al.: Curr.
Sci. 88, 1244 (2005).
11. Adewole S.O., Ezekiel A., Martins C.: Afr. J.
Biomed. Res. 9, 173 (2006).
12. Nadkarni K.M.: Indian Materia Medica, 3
rd
ed.,
pp. 202-207 Popular Book Depot, Mumbai
1954.
13. Kirtikar K.R., Basu B.D.: Indian Medicinal
Plants, 2
nd
ed., pp. 1052-1054, Lalit Mohan
Basu Publications, Allahabad 1933.
14. Chopra R.W., Chopra I.C., Handa K.L., et al.:
Indigenous Drugs of India, 2
nd
ed., pp. 314-316,
Dhar and Sons Ltd., Calcutta 1958.
15. Chude M.A., Orisakwe O.J., Afonne O.J., et al.:
Ind. J. Pharmacol. 33, 215 (2001).
16. Pari L., Satheesh M.A.: J. Ethnopharmacol. 91,
109 (2004).
17. Rao K.N., Krishna M.B., Srinivas N.: Trop. J.
Pharm. Res. 3, 305 (2004).
18. Purohit A., Sharma A.: Ind. Drugs 43, 538
(2006).
19. Addae M.I., Achenbach H.: Phytochemistry 24,
1817 (1985).
20. Sokeng S.D., Rokeya B., Mostafa M., et al.:
Afr. J. Tradit. Complement. Altern. Med. 2, 94
(2005).
21. Mafro E.K., Wallace P., Timpo G., et al.:
Pharmacology 21, 753 (1990).
22. Enyikwola O., Addy E.O., Adoga G.I., et al.:
Discov. Innovat. 3, 61 (1991).
23. Rachel N.U.: Biokemistri 15, 7 (2003)
24. Asolkar L.V., Kakkar K.K., Chatre O.J.:
Glossary of Indian medicinal plants with active
principles (Part I) A-K series, p. 176.
Publication and Information Directorate, CSIR,
New Delhi 1992.
25. Anonymous: The wealth of India ñ A dictionary
of Indian raw materials and industrial products.
Raw materials series, revised edn., vol. 3 Ca-Ci,
p. 325, National Institute of Science Communication
and Information Resources, New Delhi
1992.
26. Yoganarasimhan S.N.: Medical plants of India,
2
nd
ed., pp. 109-110, Tamilnadu, International
Book Publishers., Print Cyber Media., Bangalore
2000.
27. Gupta S.S., Verma S.C., Garg V.P., et al.:
Indian J. Med. Res. 55, 754 (1967).
28. Prakasam A., Sethupathy S., Pugalend K.V.:
Pol. J. Pharmacol. 56, 587 (2004).
29. Babu V., Gangadevi T., Subramoniam A.:
Indian J. Pharmacol. 34, 409 (2002).
30. Don G.: Medicinal plants of the world, Ross
I.A. Ed., pp. 109-118, Humana Press, Totowa,
N.J. 1999.
31. Ghosh R.K., Gupta I.: Indian J. Anim. Health
19, 145 (1980).
32. Chattopadhyay R.R., Sarkar S.K., Ganguli S., et
al.: Indian J. Physiol. Pharmacol. 35, 145
(1991).
33. Chattopadhyay R.R., Sarkar S.K., Ganguli S., et
al.: Indian J. Physiol. Pharmacol. 36, 291
(1992).
34. Singh S.N., Vats P., Suri S., et al.: J.
Ethnopharmacol. 76, 269 (2001).
35. Prasannakumar G., Sudeesh S., Vijayalakshmi
N.R., et al.: Planta Med. 59, 330 (1993).
36. Dhanabal S.P., Koata C.K., Ramnathan M., et
al.: Indian J. Pharmacol. 36, 244 (2004).
37. Badole S., Patel N., Badhankar S., et al.:
Indian
J. Pharmacol. 38, 49 (2006).
38. Punitha I.S.R., Rajendran K., Shirwaikar A., et
al.: Alternat. Med. 2, 375 (2005).
39. Iwu M.M., Okunji C.O., Akah P., et al.: Planta.
Med. 56, 119 (1990).
40. Rachel N.U.: Trop. J. Pharm. Res. 2, 183
(2003).
41. Bramachan H.D., Augusti K.T., et al.: Indian J.
Physiol. Pharmacol. 3, 60 (1964).
42. Geetha B.S., Mathew B.C., Augusti K.T.:
Indian J. Physiol. Pharmacol. 38, 220 (1994).
43. Cherian S., Augusti K.T.: Indian J. Exp. Biol.
31, 26 (1993).
44. Ghosh R., Sharachandra K.H., Rita S., et al.:
Indian J. Pharmacol. 36, 222 (2004).
45. Van Wyk B.E., Van O., Gericke N.: Medical
plants of South Africa, 1
st
ed., p. 156, Briza
Publications, Pretoria 1997.
46. Bahle S., John A.O.: Med. J. Islam. Acad. Sci.
13, 75 (2000).
47. Narayan N.S., Sastry K.N.V.: Mysore J. Agric.
Sci. 9, 132 (1975).
48. Khan B.A., Abraham A., Leelamma S.: Ind. J.
Biochem. Biophys. 32, 106 (1995).
49. Yadav S., Vats V., Dhunnoo Y., et al.: J.
Ethnopharmacol. 82, 111 (2002).
50. Kesari A.N., Gupta R.K., Watal G.: J.
Ethnopharmacol. 97, 247 (2005).
51. John L.S., John T. A., Lawrence A. L., et al.:
J.
Am. Coll. Nutr. 22, 524 (2003).
52. Bramachari H.D., Augusti K.T.: J. Pharm.
Pharmacol. 13, 381 (1961).
53. Rahman A.U., Zaman K.: J. Ethnopharmacol.
26, 1 (1989).
54. Sigogneau M., Bilbal P., Chanez M., et al.: C.
R. Acad. Sci. D Sci. Nat. 264, 1119 (1967).
55. Shrotri D.S., Kelkar M., Deshmukh V.K., et al.:
Indian J. Med. Res. 51, 464 (1963).
56. Achrekar S., Kaklij G.S., Pote M.S., et al.: In
vivo 5, 143 (1991).
57. Ratsimamanga A.R.: C. R. Acad. Sci. D Sci.
Nat. 277, 2219 (1973).
58. Teixeira C.C., Fuchs F.D., Weinert L.S., et al.:
J. Clin. Pharm. Ther. 31, 1 (2006).
59. Rao N.K., Nammi S.: BMC Complement.
Altern. Med. 6, 17, (2006),
http:www.biomedcentral.com/1472-6882/6/17.
60. Nagappa A.N., Thakurdesai P.A., Venkat Rao
N., Singh J.: J. Ethnopharmacol. 88, 45 (2003).
61. Sivajothia V., Dey A., Jayakar B., et al.: Iran.
J.
Pharm. Res. 7, 53 (2008).
62. Wild S., Roglic G., Green A., et al.: Diabetes
Care 27, 1047 (2004).
63. Tiwari A.K., Madhusudana R. J., et al.: Curr.
Sci. 83, 30 (2002).
1. Tiwari, A.K., and
J. Madhusudana Rao, 2002.
Diabetes mellitus and multiple therapeutic
approaches of phytochemicals: Present status and
future prospects. Curr Sci., 83: 30-38.
2. Bhattaram, V.A., M. Ceraefe, C. Kohlest, M. Vest
and H. Deundorf, 2002. Pharmacokinetics and
bioavailabitlity of herbal medicinal products.
Phytomed., 9: 1-36.
3. Complementary medicine is booming world wide,
1996. British medical journal., 313: 131-3.
4. WHO Study Group Report. Diabetes mellitus, 1985.
WHO Tech Rep Ser., 727: 1-113.
5. Bailey, C.J., 1989. Traditional plant medicines
as
treatment for diabetes. Diabetes care., 12: 553-64.
6. Jia, W., W.Y. Gao and P.G. Xiao, 2003.
Antidaibetic
drugs of plant origin used in
China:
Composition, pharmacology and hypoglycemic
mechanisms. Zhongguo Zhong Yao Za Zhi., 28:
108-113.
7. Elder, C., 2004. Ayurveda for diabetes mellitus:
a
review of the biomedical literature. Altern Ther
Health Med., 10: 44-50.
8. Loew, D. and M. Kaszkin, 2002. Approaching the
problem of bioequivalence of Herbal Medicinal
Products. Phytother Res., 16: 705-711.
9. The WHO Expert Committee on Diabetes Mellitus,
1980. Technical Report Series 646, Geneva and
World Health Organization.
10. Halberstein, R.A., 2005. Medicinal plants:
historical
and
cross-cultural usage patterns.
Ann Epidemiol.,
15: 686-99.
11. Mitra, S.K.,
S. Gopumadhavan, T.S. Muralidhar,
S.D. Anturlikar and M.B. Sujatha, 1996. Effect of
a herbomineral preparation D-400 in streptozotocin
induced diabetic rats. J Ethnopharmacol., 54: 41–46.
12. Sochar, M., N.Z. Baquer and P. Mclean,
1985.Glucose under utilization in diabetes.
Comparative studies on the changes
in the
activities of
enzymes of glucose metabolism in rat
kidney and liver. Mol Physiol., 7: 51-68.
13. Baynes, J.W. and S.R. Thrope, 1999. Role of
oxidative stress in diabetic complications.
Diabetes.,
48:1-4.
14. Morel,
D.W. and G.M. Chisolm, 1989.
Antioxidant treatment of diabetic rats inhibits
lipoprotein oxidation and cytotoxicity. J. Lipid
Res.
30: 1827-1834.
15. Seifter, S.
and S. England, 1982. Energy
metabolism.
In: Arias I, Papper M, Schacter D.,
editor. The
Liver; Biology and Pathology. New
York,
Reven Press, pp: 219–249.
16. Harborne, J.B., 1984. Phytochemical methods. A
guide to modern techniques of plant analysis,pp: 54,
New York, USA.
17. Trinder, P., 1969. Determination of blood glucose
using an oxidase–perioxidase system with a
noncarcinogenic chromogen. J.
Clinical Pathology.
22: 158-161.
18. Madway, W., L.E. Prier and J.S. Wilkinson, 1969.
A text book
of veterinary clinical pathology. The
Willians Wilking Co. Battimore,
19. Temple, R.C., P.M. Clarck and C.N. Hales, 1992.
Measurement of insulin secretion in type 2 diabetes:
problems and pitfalls. Diabetic Medicine., 9: 503-
512.
20. Allian, C.C., L.S. Poon, C.S.G. Chan, W.
Richmond
and P.C. Fu, 1974. Enzymatic determination of total
serum cholesterol. J. Clin.Chem., 20: 470.
21. Friedewald, W.T., D.S. Fredrickson and R.J.
Levy,
1972. Estimation of concentration of low density
lipoprotein cholesterol in plasma without use of the
preparation ultracentrifuge. J. Clin. Chem., 18:
449.
22. Yagi, K., H. Ohkawa and N. Ohishi, 1979. Essay
for lipid peroxides in animal tissues by
thiobarbituric acid reaction. J. Analytical
Biochemistry, 95: 351-358.
23. Corats, N.K. and N.W. Wakeid, 1990.
Determination of inorganic nitrate in serum and
urine by a kinetic
cadmium-reduction method. J.
Clin. Chem., 36: 1440-3.
24. Drury, R.A. and E.A.C. Wallington, 1980.
Coreleton's
Histological technique 4 edition.
th
Oxford, Oxford University Press, 1980.
25. McManus, L.F.A., 1980 Histological demonstration
of mucin after periodic acid. Nature, London. Cited
from" Theory and practice of histological
techniques", Bancroft JD and MBBS, AS ed 1977,
pp.128.
26. Azaizeh, H., B. Saad, K. Khalid and O. Said.
2006.
The State of
the Art of Traditional Arab Herbal
Medicine in
the Eastern Region of the
Mediterranean: A Review. Evid Based Complement
Alternat Med. June, 3: 229-235.
27. Shafik, A. and W. Elseesy, 2003. Medicine in
ancient Egypt.
In: Seli H, Shapiro H., editors.
Medicine Across Cultures. Boston: Kluwer, pp: 27-
48.
28. Rshaad, B., H. Azaizeh, O. Said, 2005. Tradition
and perspectives of Arab herbal medicine: a review.
Evid Based Complement Alternat Med, 2: 475-9.
29. Basch, E., C. Ulbricht, G. Kuo, P. Szapary and
M.
Smith, 2003. Therapeutic applications of fenugreek.
Altern. Med. Rev., 8: 20-7.
30. Madar, Z., A. Rachel, S. Shlomith and A. Joseph,
1988. Glucose lowering effect of fenugreek in
noninsulin
dependent diabetics. Eur. J.
Clin. Nutr.,
42: 51-54.
31. Preet, A., M.R. Siddiqui, A. Taha, J. Badhai, M.E.
Hussain, P.K. Yadava
and N.Z. Baquer, 2006.
Long-term effect of Trigonella foenum graecum and
its combination with sodium orthovanadate in
preventing histopathological and biochemical
abnormalities in diabetic rat ocular tissues. Mol
Cell
Biochem., 289: 137-47.
32. Shani, J., G. Schmied, B. Joseph, Z. Abronson
and
F.G. Sneman. 1974. Hypoglycemic effects of
Trigonella faenum graecum and Lupinus termis
(Leguminosae) seed and their major alkaloids in
alloxan-diabetic and normal rats. Arch. Int.
Pharmacodyn Ther., 210: 27-37.
33. Ribes, G., Y. Sauvaire, C.D. Costa, J.C. Baccou
and
M.M. Loubatieres-Mariani, 1989. Antidiabetic
effects of subfraction from fenugreek seeds in
diabetic
dogs. Proc. Soc. Exp. Biol. Med., 182:
159-66.
34. Madar, Z., 1987. Fenugreek (Trigonella foenum
graecum)
as a means of reducing postprandial
glucose levels in diabetic rats. Nutr. Int., 29:
1261-
72.
35. Sharma, R.D., A. Sarkar and D.K. Hazra, 1996.
Hypolipidaemic effect of fenugreek seeds: a chronic
study in non-insulin dependent diabetic patients.
Phytother Res., 10: 332-334.
36. Sowmya, P. and P. Rajyalakshmi, 1999.
Hypocholesterolemic
effect of germinated
fenugreek seeds in human subjects. Plant Foods
Hum Nutr., 53: 359-365.
37. Jackson, J.E. and R. Bressler, 1981. Clinical
pharmacology of
sulphonylurea hypoglycemic
agents: part 1. Drugs., 22: 211-245.
38. Thirunavukkarasu, V., C.V. Anuradha and P.
Viswanathan, 2003. Protective effect of fenugreek
(Trigonella foenum graecum) seeds in experimental
ethanol toxicity. Phytother Res. Aug., 17: 737-743.
39. A. Saxena and N.K. Vikram, 2004. Role of
selected
Indian plants in management of type 2 diabetes. J
Altern Complement Med, 10: 369-378
40. Abdel-Barry, J.A., I.A. Abdel-Hassan and A.M.
Jawad, 2000. Hypoglycaemic effect of aqueous
extract
of the leaves of Trigonella foenumgraecum in healthy volunteers. East Mediterr
Health J., 6: 183-88.
41. Blumenthal, M., W. Busse and R. Amp, 1988.
Goldberg A. The Complete Commission
Monograph: Therapeutic guide to herbal medicines,
MA: Integrative Communications, 130, Boston.
42. Meyer, C., M. Stumvoll, V. Nadkarni, J. Dostou,
A.
Mitrakou and J. Gerich, 1998. Abnormal renal and
hepatic glucose metabolism in type 2 diabetes
mellitus; J. Clin. Invest., 102: 619-624.
43. Raju, J., D. Gupta, A.R. Rao, P.K. Yadava and
N.Z.
Baquer, 2001.
Trigonella foenum-graecum
(fenugreek) seed powder improves glucose
homeostasis in alloxan diabetic rat tissues by
reversing the altered glycolytic, gluconeogenic and
lipogenic enzymes; Mol. Cell. Biochem., 224: 45-51.
44. Devi, B.A., N. Kamalakkannan and P.S. Prince.
Supplementation of
fenugreek leaves to diabetic
rats.
Effect on carbohydrate
metabolic enzymes
in
diabetic liver and
kidney. Phytother Res.,
17(10): 1231-3.
45. Belfiore, F., S. Iannello, R. Campione, G.
Volpicelli
and F. Caraffa, 1990 Metabolic effects of
hyperglycemia
in various tissues. In: Belfiore
F,
Molinatti GM, Reaven GM., editors. Frontiers in
Diabetes.
Basel, Switzerland: Karger; (10):
124–133.
46. Camerini Davalos, R.A., C.A. Velasco and A.S.
Reddi, 1990. Metabolism of glomerular basement
membrane in diabetes. In: Belfiore F, Molinatti GM,
Reaven GM., editors. Frontiers in Diabetes. Basel,
Switzerland: Karger,
(10): 61–77.
47. Iannello, S., P. Milazzo, F. Bordonaro and F.
Belfiore, 2005. Effect of In Vitro Glucose and
Diabetic Hyperglycemia on Mouse Kidney Protein
Synthesis: Relevance to Diabetic Microangiopathy.
Med. Gen. Med., 7: 1.
48. Cohn, R.M. and K.S. Roth, 1996. Biochemistry and
disease.
Williams and Wilkins Publishers,
Baltimore, Lipid and lipoprotein metabolism, pp:
280.
49. De-xiu, B., E. Wolfgang, M. Rainer, K. Göran and
Y. Zhong-qun, 2005. IKKß-dependent NF- B
pathway controls vascular inflammation and initial
hyperplasia. The FASEB J., 19: 1293-1295.
50. Chaterjea, M.N.
and R. Shinde, 1994. Metabolism
of carbohydrate Part II; in Text book of medical
biochemistry 1st edition (New Delhi: Jay Pee
Brothers Medical publishers), pp: 421.
51. Scott, M. and M. Grundy., 1999 Diabetes and
cardiovascular disease, Circulation,100: 1134-1146.
52. Frayn. K.N., 1993 Insulin resistance and lipid
metabolism. Curr Opin Lipidol,4: 197-204.
53. Gupta, D., J. Raju, J. Prakash and N.Z. Baquer,
1999. Change
in the lipid profile, lipogenic and
related
enzymes in the
livers of experimental
diabetic rats: effect of insulin and vanadate,
Diabetes Res. Clin. Pract., 46: 1–7.
54. Sauvaire, Y., G. Ribes, J.C. Baccou and M.M.
Loubatieeres-Mariani, 1991. Implication of steroid
saponins and sapogenins in the hypocholesterolemic
effect
of fenugreek. Lipids, 26:
191-197.
55. West, K.M., 1982. Hyperglycemia as a cause
of
long-term complications; in Complications of
diabetes 2nd edition (ed.) H Keen (London: Jarret
Edward Arnold), pp: 3-18.
56. Sochor, S., N.Z. Baquer, M.R. Ball and P.
McLean,
1987. Regulation of enzymes of glucose metabolism
and lipogenesis
in diabetic rat liver by thyroid
hormones; Biochem. Int., 15: 619-627.
57. Madar, Z.L. and R. Thorne, 1987. Dietary fiber,
Prog. Food Nutr. Sci., 11: 153-174.
58. Petit,
P.R., Y.D. Sauvaire, D.M. Hillaire-Buys,
O.M. Leconte, Y.G. Baissac, G.R. Ponsin and G.R.
Ribes, 1995. Steroid saponins from fenugreek seeds:
extraction, purification and pharmacological
investigation on feeding behaviour and plasma
cholesterol; Steroids, 60: 674-680.
59. Yoshikawa, M., T. Murakami and H. Komatsu,
1997. Medicinal foodstuffs. IV. Fenugreek seed. (1):
structures of
trigoneosides Ia, Ib, IIa, IIb, IIIa and
IIIb, new furostanol saponins from the seeds of
Indian Trigonella foenum-graecum L. Chem Pharm
Bull (Tokyo), 45: 81-87.
60. Amp, M., A.l. Hobori and A. Raman, 1998.
Antidiabetic and hypocholesterolaemic effects of
Fenugreek. Phytother Res., 12: 233-42.
61. Broca, C., R. Gross, P. Petit, Y. Sauvaire, M.
Manteghetti, M. Tournier, P. Masiello, R. Gomis
and G. Ribes,
1999. 4-Hydroxyisoleucine:
experimental evidence of its insulinotropic and
antidiabetic
properties; Am. J. Physiol., 277:
E617–E623.
62. Amp, A., C.V. Anuradha and P. Ravikumar, 2001.
Restoration on tissue antioxidants by fenugreek
seeds (Trigonella Foenum Graecum) in
alloxandiabetic rats. Indian
J. Physiol Pharmacol. Oct,
45: 408-20.
63. Ravikumar, P. and C.V. Anuradha, 1999. Effect of
fenugreek seeds on blood lipid peroxidation and
antioxidants
in diabetic rats.
Phytother Res.,
13: 197-201.
64. Vats, V., S.P. Yadav and J.K. Grover, 2003.
Effect
of T. foenumgraecum on glycogen content of tissues
and the key enzymes of carbohydrate metabolism. J.
of Ethnopharmacology, 85: 237-242.
65. Annida, B. and P. Stanely, 2005. Supplementation
of fenugreek leaves reduces oxidative stress in
streptozotocin-induced diabetic rats. J. Med
Food.
Fall, 8: 382-5.
66. Pari, L. and L. Latha, 2004. Protective role of
Scopari dulcis
plant extract on brain antioxidant
status
and lipidperoxidation in
STZ diabetic
male wistar rats. BMC Compliment
Altern Med.,
4: 1472-6882-4-16.
67. Sharma, K., P. McCue, S.R. Dunn, 2003. Diabetic
kidney disease in the db/db mouse. Am J Physiol.,
28: F1138-F1144.
68. Szkudelski, T., 2001. The mechanism of alloxan
and
streptozotocin action in b cells of the rat
pancreas.
Physiol Res., 50: 536-546.
69. Dario, G., C. Antonio, P. Giuseppe, 1996.
Oxidative
stress and diabetic complications. Diabetes Care.,
19: 257-267.
70. Jayadev, R., G. Dhananjay, R. Araga, K.
Pramod, Z. Yadava and N. Baquer, 2001.
Trigonella foenum graecum (fenugreek) seed
powder improves glucose homeostasis in alloxan
diabetic rat tissues by reversing the altered
glycolytic, gluconeogenic and lipogenic enzymes.
Molecular and Cellular Biochemistry, 224: 45-51.
1. The
Diabetes Control and Complications Trial Research Group (1993) The effect of
intensive treatment of diabetes on the development and progression of long-term
complications in insulin-dependent diabetes mellitus. N Engl J Med 329:
977–986.
2.
Karter AJ, Ackerson LM, Darbinian JA, D'Agostino RB Jr, Ferrara
A, et al. (2001) Self-monitoring of blood glucose levels and glycemic control:
the Northern California Kaiser Permanente Diabetes registry. Am J Med 111: 1–9.
3.
Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, et al. (1995)
Intensive insulin therapy prevents the progression of diabetic microvascular
complications in Japanese patients with non-insulin-dependent diabetes
mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 28:
103–117.
4.
Owens DR, Barnett AH, Pickup JC, Kerr D, Bushby P, et al. (2004)
Blood glucose monitoring in type 1 and type 2 diabetes: reaching a
multidisciplinary consensus. Diabetes and Primary Care 6: 8–16.
5.
Bergenstal RM, Gavin JR III (2005) The role of self-monitoring
of blood glucose in the care of people with diabetes: report of a global
consensus conference. Am J Med 118: 1S–6S.
6.
Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, et al.
(2006) Management of hyperglycemia in type 2 diabetes: A consensus algorithm
for the initiation and adjustment of therapy: a consensus statement from the
American Diabetes Association and the European Association for the Study of
Diabetes. Diabetes Care 29: 1963–1972.
7.
Davis WA, Bruce DG, Davis TM (2006) Is self-monitoring of blood
glucose appropriate for all type 2 diabetic patients? The Fremantle Diabetes
Study. Diabetes Care 29: 1764–1770.
8.
Benson K, Hartz AJ (2000) A comparison of observational studies
and randomized, controlled trials. N Engl J Med 342: 1878–1886.
9.
Farmer A, Wade A, Goyder E, Yudkin P, French D, et al. (2007)
Impact of self monitoring of blood glucose in the management of patients with
non-insulin treated diabetes: open parallel group randomised trial. BMJ 335:
132–139.
10.
Armitage P, Berry G, Matthews JNS (2002) Statistical methods in
medical research. Oxford: Blackwell Science.
11.
Martin S, Schneider B, Heinemann L, Lodwig V, Kurth HJ, et al.
(2006) Self-monitoring of blood glucose in type 2 diabetes and long-term
outcome: an epidemiological cohort study. Diabetologia 49: 271–278.
12.
Welschen LM, Bloemendal E, Nijpels G, Dekker JM, Heine RJ, et
al. (2005) Self-monitoring of blood glucose in patients with type 2 diabetes
who are not using insulin: a systematic review. Diabetes Care 28: 1510–1517.
13.
Fontbonne A, Billault B, Acosta M, Percheron C, Varenne P, et
al. (1989) Is glucose self-monitoring beneficial in non-insulin-treated
diabetic patients? Results of a randomized comparative trial. Diabete Metab 15:
255–260.
14.
Muchmore DB, Springer J, Miller M (1994) Self-monitoring of
blood glucose in overweight type 2 diabetic patients. Acta Diabetol 31:
215–219.
15.
Allen BT, DeLong ER, Feussner JR (1990) Impact of glucose
self-monitoring on non-insulin-treated patients with type II diabetes mellitus.
Randomized controlled trial comparing blood and urine testing. Diabetes Care
13: 1044–1050.
16.
Schwedes U, Siebolds M, Mertes G (2002) Meal-related structured
self-monitoring of blood glucose: effect on diabetes control in
non-insulin-treated type 2 diabetic patients. Diabetes Care 25: 1928–1932.
17.
Davidson MB, Castellanos M, Kain D, Duran P (2005) The effect of
self monitoring of blood glucose concentrations on glycated hemoglobin levels
in diabetic patients not taking insulin: a blinded, randomized trial. Am J Med
118: 422–425.
18.
Guerci B, Drouin P, Grange V, Bougneres P, Fontaine P, et al.
(2003) Self-monitoring of blood glucose significantly improves metabolic
control in patients with type 2 diabetes mellitus: the Auto-Surveillance
Intervention Active (ASIA) study. Diabetes Metab 29: 587–594.
19.
Koster I, von FL, Ihle P, Schubert I, Hauner H (2006) The cost
burden of diabetes mellitus: the evidence from Germany–the CoDiM study.
Diabetologia 49: 1498–1504.
20.
Soumerai SB, Mah C, Zhang F, Adams A, Barton M, et al. (2004)
Effects of health maintenance organization coverage of self-monitoring devices
on diabetes self-care and glycemic control. Arch Intern Med 164: 645–652.
[1] V.A. Gault, P.R. Flatt, F.P.M. OHarte, Biochem.
Biophys. Res.
Commun. 308 (2003) 207–213.
[2] D.J. Drucker, Gastroenterology 122 (2002)
531–534.
[3] I. Valverde, M. Morales, F. Clemente, M.I.
Lopez-Delgado, E.
Delgado, A. Perea, M.L. Villanueva-Penacarrillo,
FEBS Lett. 349
(1994) 313–316.
[4] M.L. Villanueva-Penacarrillo, A.I. Alcantara, F.
Clemente, E.
Delgado, I. Valverde, Diabetologia 37 (1994)
1163–1166.
[5] M.A. Trapote, F. Clemente, C. Galera, M.
Morales, A.I.
Alcantara, M.I. Lopez-Delgado, M.L.
Villanueva-Penacarrillo,
I. Valverde, J. Endocrinol. Invest. 19 (1996)
114–118.
[6] F.P.M. OHarte, A.M. Gray, Y.H.A. Abdel-Wahab,
P.R. Flatt,
Peptides 18 (1997) 1327–1333.
[7] H. Yang, J.M. Egan, Y. Wang, C.D. Moyes, J.
Roth, M.H.
Montrose, C. Montrose-Rafizadeh, Am. J. Physiol. 275
(1998)
C675–C683.
[8] J. Buteau, R. Roduit, S. Susini, M. Prentki,
Diabetologia 42
(1999) 856–864.
[9] J. Zhou, X. Wang, M.A. Pineyro, J.M. Egan,
Diabetes 48 (1999)
2358–2366.
[10] A. Trumper, K. Trumper, H. Trusheim, R. Arnold,
B. Goke, D.
Horsch, Mol. Endocrinol. 15 (2001) 1559–1570.
[11] J.A. Pospisilik, J. Martin, T. Doty, J.A.
Ehses, N. Pamir, F.C.
Lynn, S. Piteau, H.U. Demuth, C.H. McIntosh, R.A.
Pederson,
Diabetes 52 (2003) 741–750.
[12] J.J. Meier, O. Goetz, J. Anstipp, D. Hagemann,
J.J. Holst, W.E.
Schmidt, B. Gallwitz, M.A. Nauck, Am. J. Physiol.
Endocrinol.
Metab. 286 (2004) E621–E625.
[13] S. Mojsov, G. Heinrich, I.B. Wilson, M.
Ravazzola, L. Orci, J.F.
Habener, J. Biol. Chem. 261 (1986) 11880–11889.
[14] N. Inagaki, Y. Seino, J. Takeda, H. Yano, Y.
Yamada, G.I. Bell,
R.L. Eddy, Y. Fukushima, M.G. Byers, T.B. Shows,
Mol.
Endocrinol. 3 (1989) 1014–1021.
[15] K. Moens, H. Heimberg, D. Flamez, P. Huypens,
E. Quartier, Z.
Ling, D. Pipeleers, S. Gremlich, B. Thorens, F.
Schuit, Diabetes
45 (1996) 257–261.
[16] B. Gallwitz, M. Witt, U.R. Folsch, W.
Creutzfeldt, W.E. Schmidt,
J. Mol. Endocrinol. 10 (1993) 259–268.
[17] M. Nattrass, C.J. Bailey, Baillieres Best
Pract. Res. Clin.
Endocrinol. Metab. 13 (1999) 309–329.
[18] T.J. Kieffer,
C.H.S. McIntosh, R.A. Pederson, Endocrinology 136
(1995) 3585–3596.
[19] R. Mentlein, Regul. Pept. 85 (1999) 9–24.
[20] B. Ahren, Curr. Diab. Rep. 3 (2003) 365–372.
[21] B. Gallwitz, T. Ropeter, C. Morys-Wortmann, R.
Mentlein, E.G.
Siegel, W.E. Schmidt, Regul. Pept. 86 (2000)
103–111.
[22] V.A. Gault, F.P.M. OHarte, P. Harriott, P.R.
Flatt, Metabolism
52 (2003) 679–687.
[23] B.D. Green, V.A. Gault, N. Irwin, M.H. Mooney,
C.J. Bailey, P.
Harriott, B. Greer, P.R. Flatt, F.P.M. OHarte, Biol.
Chem. 384
(2003) 1543–1551.
[24] B.D. Green, V.A. Gault, M.H. Mooney, N. Irwin,
P. Harriott, B.
Greer, C.J. Bailey, F.P.M. OHarte, P.R. Flatt, Biol.
Chem. 385
(2004) 169–177.
[25] E.G. Siegel, B. Gallwitz, G. Scharf, R.
Mentlein, C. MorysWortmann, U.R. Folsch, J. Schrezenmeir, K. Drescher, W.E.
Schmidt, Regul. Pept. 79 (1999) 93–102.
[26] E.G. Siegel, G. Scharf, B. Gallwitz, R.
Mentlein, C. MorysWortmann, U.R. Folsch, W.E. Schmidt, Eur. J. Clin. Invest. 29
(1999) 610–614.
[27] G.B. Fields, R.L. Noble, Int. J. Pept. Protein
Res. 35 (1990) 161–
214.
[28] N.H. McClenaghan, C.R. Barnett, E. Ah-Sing E,
Y.H.A. AbdelWahab, F.P.M. OHarte, T.W. Yoon, S.K. Swanston-Flatt, P.R.
Flatt, Diabetes 45 (1996) 1132–1140.
[29] J.C. Miguel, Y.H.A. Abdel-Wahab, B.D. Green,
P.C. Mathias,
P.R. Flatt, Biochem. Pharmacol. 65 (2003) 283–292.
[30] C.J. Bailey, P.R. Flatt, T.W. Atkins, Int. J.
Obes. 6 (1982) 11–21.
[31] J.F. Stevens, Clin. Chim. Acta 32 (1971)
199–201.
[32] P.R. Flatt, C.J. Bailey, Diabetologia 20 (1981)
573–577.
[33] R.S. Burington, Handbook of Mathematical Tables
and Formulas, McGraw-Hill, New York, 1973.
[34] M. Hassan, A. Eskilsson, C. Nilsson, C. Jonsson,
H. Jacobsson,
E. Refai, S. Larsson, S. Efendic, Nucl. Med. Biol.
26 (1999) 413–
420.
[35] D. Matthaei, P. Kramer, C. Langescheid, C.
McIntosh, G.
Schwinn, R. Ebert, R. Arnold, G. Schauder, F.
Scheler, J. Dial. 1
(1977) 641–649.
[36] G.G. Holz, O.G. Chepurny, Curr. Med. Chem. 10
(2003) 2471–
2483.
[37] B. Ahren, J.J. Holst, H. Martensson, B. Balkan,
Eur. J.
Pharmacol. 404 (2000) 239–245.
[38] B. Balkan, L. Kwasnik, R. Miserendino, J.J.
Holst, X. Li,
Diabetologia 42 (1999) 1324–1331.
[39] C.F. Deacon, P. Danielsen, L. Klarskov, M.
Olesen, J.J. Holst,
Diabetes 50 (2001) 1588–1597.
[40] C.F. Deacon, S. Wamberg, P. Bie, T.E. Hughes,
J.J. Holst, J.
Endocrinol. 172 (2002) 355–362.
[41] R.P. Pauly, H.U. Demuth, F. Rosche, J. Schmidt,
H.A. White, F.
Lynn, C.H. McIntosh, R.A. Pederson, Metabolism 48
(1999) 385–
389.
[42] R.A. Pederson, H.A. White, D. Schlenzig, R.P.
Pauly,
C.H. McIntosh, H.U. Demuth, Diabetes 47 (1998) 1253–
1258.
[43] A. Wettergren, M. Wojdemann, J.J. Holst,
Peptides 19 (1998)
877–882.
[44] B.D. Green, M.H. Mooney, V.A. Gault, N. Irwin,
C.J. Bailey, P.
Harriott, B. Greer, P.R. Flatt, F.P.M. OHarte,
Metabolism 53
(2004) 252–259.
[45] V.A. Gault, J.C. Parker, P. Harriott, P.R.
Flatt, F.P.M. OHarte,
J. Endocrinol. 175 (2002) 525–533.
[46] K. Moens, H. Heimberg, D. Flamez, P. Huypens,
E. Quartier, Z.
Ling, D. Pipeleers, S. Gremlich, B. Thorens, F.
Schuit, Diabetes
45 (1996) 257–621.
[47] V.A. Gault, P.R. Flatt, P. Harriott, M.H.
Mooney, C.J. Bailey,
F.P.M. OHarte, J. Endocrinol. 176 (2003) 133–141.
[48] S.A. Hinke, R.W. Gelling, R.A. Pederson, S.
Manhart, C.
Nian, H.U. Demuth, C.H. McIntosh, Diabetes 51 (2002)
652–
661.
[49] F.P.M. OHarte, V.A. Gault, J.C. Parker, P.
Harriott, M.H.
Mooney, C.J. Bailey, P.R. Flatt, Diabetologia 45
(2002) 1281–
1291.
[50] B.D. Green, M.H. Mooney, V.A. Gault, C.J.
Bailey, N. Irwin, P.
Harriott, B. Greer, P.R. Flatt, F.P.M. OHarte, J.
Endocrinol. 180
(2004) 379–388.
[51] Q. Xiao, J. Giguere, M. Parisien, W. Jeng, S.A.
St-Pierre,
P.L. Brubaker, M.B. Wheeler, Biochemistry 40 (2001)
2860–
2869.
[52] V.A. Gault, F.P.M. OHarte, P. Harriott, P.R.
Flatt, Biochem.
Biophys. Res. Commun. 290 (2002) 1420–1426.
[53] V.A. Gault, F.P.M. OHarte, P. Harriott, M.H.
Mooney,
B.D. Green, P.R. Flatt, Diabetologia 46 (2003)
222–230.
1. Augusti KT. Therapeutic values of onion (Allium
cepa
L.) and garlic (Allium sativum L.). Indian J Exp Biol
1996; 34: 634-640
2. Kiesewetter H, Jung F, Pindur G, et al. Effect of
garlic
on thrombocyte aggregation, microcirculation, and
other risk factors. Int Clin Pharmacol Ther Toxicol
1991; 29: 151-155.
3. Ali M, Thomson M. Consumption of a garlic clove a
day could be beneficial in preventing thrombosis.
Prostaglandins Leukot Essent Fatty Acids 1995; 53:
211-212.
4. Bordia T, Mohammed N, Thomson M, Ali M. An
evaluation of garlic and onion as antithrombotic
agents.
Prostaglandins Leukot Essent Fatty Acids 1996; 54:
183-186.
5. Ali M, Thomson M, Alnaqeeb MA, et al.
Antithrombotic activity of garlic: its inhibition of
the
synthesis of thromboxane-TXB2 during infusion of
arachidonic acid and collagen in rabbits.
Prostaglandins
Leukot Essent Fatty Acids 1990; 41: 95–99.
6. Thomson M, Mustafa T, Ali M. Thromboxane-B2
levels in serum of rabbits receiving a single
intravenous
dose of aqueous extract of garlic and onion.
Prostaglandins Leukot Essent Fatty Acids 2000; 63:
217-221.
7. Augusti KT, Sheela CG. Antiperoxide effect of
S-allyl
cysteine sulfoxide, a insulin secretagogue, in
diabetic
rats. Experientia 1996; 52: 115-120.
8. Anwar MM, Meki AR. Oxidative stress in
streptozotocin-induced diabetic rats: effects of
garlic oil
and melatonin. Comp Biochem Physiol A Mol Integr
Physiol 2003; 135: 539-547.
9. Bakri IM, Douglas CW. Inhibitory effect of garlic
extract on oral bacteria. Arch Oral Biol 2005; 50:
645-
651.
10. Rees LP, Minney SF, Plummer NT, Slater JH,
Skyrme
DA. A quantitative assessment of the antimicrobial
activity of garlic (Allium sativum.) World J
Microbiol
Biotechnol 1993; 9: 303-307.
11. Yoshida H, Iwata N, Karsuzaki H, et al.
Antimicrobial
activity of a compound isolated from an
oil-macerated
garlic extract. Biosci Biotechnol Biochem 1998; 62:
1014-1017.
12. Ali M, Al-Qattan KK, Al-Enezi F, Khanafer RM,
Mustafa T. Effect of allicin from garlic powder on
serum lipids and blood pressure in rats fed with a
high
cholesterol diet. Prostaglandins Leukot Essent Fatty
Acids 2000; 62: 253-259.
13. Banerjee SK, Maulik SK. Effect of garlic on
cardiovascular disorders: a review. Nutr J 2002; 1:
4.
14. Jamison JR. Garlic (Allium sativum). In:
Clinical
Guide to Nutrition and Dietary Supplements in
Disease
Management. London: Churchill Livingstone,
2003:
541-546.
15. Hassan HT: Ajoene (natural garlic compound): a
new
anti-leukaemia agent for AML therapy. Leuk Res 2004;
28: 667-671.
16. Block E, Ahmad S, Catalfamo JL, Jain MK,
ApitzCastro R. Antithrombotic organosulfur compounds
from garlic, structural, mechanistic and synthetic
studies. J Am Chem Soc 1986; 108: 7045-7055.
17. Sheela CG, Augusti KT. Antidiabetic effects of
S-allyl
cysteine sulphoxide isolated from garlic Allium
sativum
Linn. Indian J Exp Biol 1992; 30: 523–526.
18. Sheela CG, Kumud K, Augusti KT. Anti-diabetic
effects of onion and garlic sulfoxide amino acids in
rats. Planta Med 1995; 61: 356-357.
19. Kasuga S, Ushijima M, Morihara N, et al. Effect of
aged garlic extract (AGE) on hyperglycemia induced
by
immobilization stress in mice. Nippon Yakurigaku
Zasshi 1999; 1999: 191-197.
20. Liu C-T, Hse H, Lii C-K, Chen P-S, Sheen L-Y.
Effects
of garlic oil and diallyl trisulfide on glycemic
control in
diabetic rats. Eur J Pharmacol 2005; 516: 165-173.
21. Mathew PT, Augusti KT. Studies on the effect of
allicin (diallyl disulphide-oxide) on alloxan diabetes
I.
Hypoglycaemic action and enhancement of serum
insulin effect and glycogen synthesis. Indian J
Biochem
Biophys 1973; 10: 209–212.
22. Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR.
Traditional plant treatments for diabetes. Studies
in
normal and streptozotocin diabetic mice.
Diabetologia
1990; 33: 462 - 464.
23. Baluchnejadmojarad T, Rohgani M.
Endotheliumdependent and -independent effect of aqueous extract of
garlic on vascular reactivity on diabetic rats.
Filoterapia
2003; 74: 630-637.
24. Baluchnejadmojarad T, Rohgani M. Garlic extract
attenuates time-dependent changes in the reactivity
of
isolated aorta in streptozotocin-diabetic rats. Life
Sci
2003; 73: 2281-2289.
25. Staba EJ, Lash L, Staba JE. A commentary on the
effects of garlic extraction and formulation on
product
composition. J Nutr 2001; 131: 1118S-1119S.
26. Alnaqeeb M, Thomson M, Bordia T, Ali M.
Histopathological effects of garlic on liver and
lung of
rats. Toxicol Lett 1996; 85: 157-164.
27. Al-Qattan KK, Alnaqeeb MA, Ali M. The
antihypertensive effect of garlic (Allium sativum)
in the
rat two kidney-one clip Goldblatt model. J
Ethnopharmacol 1999; 66: 217–222.
28. Al-Qattan KK, Khan I, Alnaqeeb MA, Ali M.
Mechanism of garlic (Allium sativum) induced
reduction of hypertension in 2K-1C rats. A possible
mediation of Na/H exchanger isoform-1.
Prostaglandins
Leukot Essent Fatty Acids 2003; 69: 217-222.
29. Giorgino F, Chen JH, Smith RJ. Changes in
tyrosine
phosphorylation of insulin receptors and a 170,000
molecular weight non-receptor protein in vivo in
skeletal muscle in streptozotocin-induced diabetic
rats:
effects of insulin and glucose. Endocrinology
1992;
130: 1433-1444.
30. Veterinary Medical Care (Chapter 3). In: Guide for the
Care and Use of Laboratory Animals. Washington DC:
Institute for Laboratory Animal Research, American
Academy of Sciences, 1996.
31. Bradford MM. A rapid and sensitive method for
the
quantification of microgram quantities of protein
utilizing the principle of protein-dye binding. Anal
Biochem 1976;
72: 248-254.
32. Diabetes Atlas, Second Edition. Belgium: International
Diabetes Federation (IDF), 2003.
33. Reusch JE. Diabetes, microvascular
complications, and
cardiovascular complications: what is it about
glucose?
J Clin Invest 2003; 112: 986-988.
34. Williams G,
Pickup JC. Handbook of Diabetes, Third
Edition. Malden MA: Blackwell Publishing Co., 2004.
35. Rang HP, Dale MM, Ritter JM, Moore PK.
Pharmacology, 5th Edition. Edinburgh: Churchill
Livingstone, Elsevier Science Ltd., 2003:
387-392.
36. McKenna DJ, Jones K, Hughes K, Humphrey S:
Botanical Medicines, the desk reference for major
herbal supplements, Second Edition. New York: The
Haworth Herbal Press, 2002: 28.
37. Eisenbarth GS, Kotzin BL. Enumerating
autoreactive T
cells in peripheral blood: a big step in diabetes
prediction. J Clin Invest 2003; 111: 179-181.
38. Jelodar GA, Maleki M, Motadayen MH, Sirus S.
Effect
of fenugreek, onion and garlic on blood glucose and
histopathology of pancreas of alloxan-induced
diabetic
rats. Indian J Med Sci 2005; 59: 64-69.
39. Keane WF, Eknoyan G. Proteinuria, albuminuria, risk,
assessment, detection, elimination (PARADE): A
position paper of the national kidney foundation. Am
J
Kidney Dis 1999; 33: 1004–1010.
40. Greive KA, Osicka TM, Russo LM, Comper WD.
Nephrotic-like proteinuria in experimental diabetes.
Am J Nephrol 2003; 23: 38-46.
41. Rasch R.
Prevention of diabetic glomerulopathy in
streptozotocin diabetic rats by insulin treatment.
Kidney size and glomerular volume. Diabetologia
1979; 16: 124-128.
42. El-Demerdash FM, Yousef MI, El-Naga NI.
Biochemical study on the hypoglycemic effects of
onion and garlic in alloxan-induced diabetic rats.
Food
Chem Toxicol 2005; 43: 57-63.
43. Jain RC, Vyas CR. Hypoglycemic action of onion
and
garlic. Am J Clin Nutr 1975; 28: 684-685.
1. Boyle JP, Honeycutt AA, Narayan KM, et al.
Projection of diabetes burden
through 2050: impact of changing demography and
disease prevalence in the US.
Diabetes Care. 2001;24:1936-1940.
2. American Diabetes Association. Economic costs of
diabetes in the US in 2002.
Diabetes Care. 2003;26:917-932.
3. Diabetes Control and Complications Trial Research
Group. The effect of intensive treatment of diabetes on the development and
progression of long-term complications of insulin-dependent diabetes mellitus.
N Engl J Med. 1993;329:
977-986.
4. UK Prospective Diabetes Study (UKPDS) Group.
Intensive blood-glucose control with sulphonylureas or insulin compared with
conventional treatment and risk
of complications in patients with type 2 diabetes
(UKPDS 33). Lancet.
1998;352:837-853.
5. American Diabetes Association. Standards of
medical care in diabetes. Diabetes
Care. 2005;28(suppl 1):S4-S36.
6. Koro CE, Bowlin SJ, Bourgeois N, Fedder DO.
Glycemic control from 1988 to
2000 among US adults diagnosed with type 2 diabetes:
a preliminary report.
Diabetes Care. 2004;27:17-20.
7. Karter AJ, Moffet HH, Liu J, et al. Achieving good
glycemic control: initiation of
new antihyperglycemic therapies in patients with
type 2 diabetes from the Kaiser Permanente Northern California diabetes
registry. Am J Manag Care. 2005;11:262-270.
8. Skyler JS, Oddo C. Diabetes trends in the USA.
Diabetes Metab Res Rev.
2002;18(suppl 3):S21-S26.
9. Clark DO, Von Korff M, Saunders K, Baluch WM,
Simon GE. A chronic disease
score with empirically derived weights. Med Care.
1995;33:783-795.
10. Putnam KG, Buist DS, Fishman P, et al. Chronic
disease score as a predictor of
hospitalization. Epidemiology. 2002;13:340-346.
11. Cohen FJ, Neslusan CA, Conklin JE, Song X.
Recent antihyperglycemic prescribing trends for US privately insured patients
with type 2 diabetes. Diabetes
Care. 2003;26:1847-1851.
12. Benoit SR, Fleming R, Philis-Tsimikas A, Ji M.
Predictors of glycemic control
among patients with type 2 diabetes: a longitudinal
study. BMC Public Health.
2005;5:36.
13. Kogut SJ, Andrade SE, Willey C, Larrat EP.
Nonadherence as a predictor of
antidiabetic drug therapy intensification
(augmentation). Pharmacoepidemiol Drug
Saf. 2004;13:591-598.
14. Grant RW, Cagliero E, Dubey AK, et al. Clinical
inertia in the management of
type 2 diabetes metabolic risk factors. Diabetes
Med. 2004;21:150-155.
15. Shah BR, Hux JE, Laupacis A, Zinman B, van
Walreven C. Clinical inertia in
response to inadequate glycemic control. Diabetes
Care. 2005;28:600-606.
16. Wetzler HP, Snyder JW. Linking pharmacy and
laboratory data to assess the
appropriateness of care in patients with diabetes.
Diabetes Care. 2000;23:1637-1641.
17. The stats on diabetes and drugs. Diabetes
Forecast. January 1999;52:40.
18. Stafford RS, Davidson SM, Davidson H,
Miracle-McMahill H, Crawford SL,
Blumenthal D. Chronic disease medication use in
managed care and indemnity
insurance plans. Health Serv Res. 2003;38:595-612.
Prout TE Malaisse WJ, Pirart J (1974). Proceedings
VIII Congress of
International Diabetes Federation, Excerpta Medica,
Amsterdam, pp.
162.
Rajash Kumar G, Achycet Narayan K, Geeta W, Murthy
PS, ramesh C,
Kapil M and Vibha T (2005). Hypoglycemic and
antidiabetic effect of
aqueous extract of leaves of Annona Squamosa (L) in
experimental
animals. Current Science. 88(8): 1244–1253.
Siddharth NS (2001). Containing the global epidemic
of diabetes. J.
Diabetol. 3: 11.
Subramonium A, Pushangadan P, Rajasekaran S (1996).
Effects of
Artemisia pallens wall on blood glucose levels in
normal and alloxaninduced diabetic rats. J. Ethnopharmacol. 50:13–17.
Teixeira CC, Fuchs FD, Blotta RM, Knijnik J, Delgado
IC, Netto MS,
Ferreira E, Costa AP, Mussnich DG, Ranquetat GG and
Gastaldo G
(1990). Effect of tea prepared from leaves of
Syzygium jambos on
glucose tolerance in nondiabetic subjects. Diabets
Care. 13: 907 –
908.
Teixeira CC, Pinto LP, Kessler FHP, Knijnik J, Pinto
CP, Gastaldo G,
Fuchs FD (1997). The effect of Syzygium cumini (L)
skeels on postprantial blood glucose levels in non-diabetic rats and rats with
streptozotocin-induced diabetes mellitus. J.
Ethnopharmacol. 56: 209–
213.
Teixeira CC, Rav CA, Da Silva PM, Melchior R,
Argenta R, Anselmi F,
Almeida CRC, Fucus FD (2000). Absence of
antihyperglycemic effect
of jambolan in experimental and clinical models. J.
Ethnopharmacol.
71: 343–347.
Tian YM, Johnson G, Ashcroft JH (1998).
Sulfonylureas enhance
exocytosis from pancreatic b-cells by a mechanism
that does not
involve direct activation of protein kinase C.
Diabetes. 47: 1722–1726.
Twaij HAA, Al-Badr AA (1988). Hypoglycemic activity
of Artemisin
herba alba. J. Ethnopharmacol. 24: 123–126.
World Health Organization (1994). WHO Study Group of
Prevention of
Diabetes Mellitus. WHO Tech Ser, 844:11.
American Diabetes Association. Clinical practice
recommendation.
Diabetes Care. 1997; 20 (suppl.1): S1-S70.
Baynes JW (1991). Role of oxidative stress in
development of complication of diabetes. Diabetes. 40: 405-12.
Bailey CJ, Flatt PR, Marks V (1989). Drugs inducing
hypoglycemia.
Pharmacol. Therapeutics 42: 361-384.
Bishayi B, Roychowdhury S, Ghosh S (2002).
Hepatoprotective and immunomodulatory properties of Tinosporacordifolia in CCl4
intoxicated
mature albino rats. J. Toxicol. Sci. 27 : 139-46.
Brandstrup N, Kirk JE, Bruni C (1957). Determination
of hexokinase in
tissues. J. Gerontol. 12: 166-171.
Burcelin R, Eddouks M, Maury J, Kande J, Assan R,
Girard J (1995).
Excessive glucose production, rather than Insulin
resistance, account
for hyperglycemia in recent onset
streptozocin-diabetic rats. Diabetologia 35: 283-290.
Daisy P, James E, Ignacimuthu S (2008). Influence of
Costus speciosus
(Koen.) Sm Rhizome extracts on biochemical
parameters in STZ
induced Diabetic rats. J. Health Sci. 54(6): 1-7.
Daisy P, Jasmine R, Ignacimuthu S (2008). A novel
steroid from Elephantopus scaber L. an Ethanobotanical plant with antidiabetic
activity Phytomedicine/ Doi: 10.1016 /J. phytomed.
2008.06.001
Hu X, Sato J, Oshida Y, Yu M, Bajotto G, Sato Y
(2003). Effect of
Gosha-jinki-gan (Chinese herbal medicine):
Niuche-sen-qi-wan) on
insulin resistance in streptozotocin induced
diabetic rats. Diabetes
Res. Clin. Pract. 59: 103-111.
Humason Gl (1979). Animal tissue techniques. Freeman
and Company.
San Francisco.
James E, Daisy P, Ignacimuthu S, Veeramuthu D
(2009). Normoglycemic and hypolipidemic effect of costunolide isolated from
Costus speciosus (Koen ex. Retz.) Sm. in
streptozotocin-induced
diabetic rats. Chemico-Biological Interactions
179(2-3):329-334.
Duraipandiyan (2008). Normo-glycemic and
hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex.
Retz.)Sm. in
streptozotocin-induced diabetic rats. Chemico-Biological
Interactions
doi: 10(10): 16/10-017.
Jyoti M, Vihas TV, Ravikumar A, Sarita G (2002).
Glucose lowering
effect of aqueous extract of Enicostemma Littorale
Blume in diabetes:
a possible mechanism of action. J. Ethnopharm. 81:
317-20.
Koida H, Oda T (1959). Pathological occurrence of
glucose-6-phosphatase in liver disease. Clin. Chim. Acta. 4: 554-561.
Levine R, Goldstein M, Klein S, Huddeston B (1949).
J. Biol. Chem.
179: 985.
Muhlhauser I, Sawicki PT, Blank M, Overmann H,
Bender R, Berger M
(2000). Prognosis of persons with type 1 diabetes on
intensified insulin therapy in relation to nephropathy. J. Inter. Med.
248:333–341.
Muruganandan S, Gupta S, Kataria M, Lal J, Gupta PK,
(2002). Mangiferin protects the streptozotocin-induced oxidative damage to
cardiac and renal tissues in rats. Toxicol. 176: 165-173.
Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal
J (2005). Effect
of mangiferin on hyperglycemia and atherogenicity in
streptozotocin
diabetic rats. J. Ethnopharmacol. 97: 497-501.
Nirmala EJ, Rajalakshmi M, Edel P, Daisy P (2008).
Effect of Hexane
extract of Cassia fistula barks on blood glucose and
lipid profile in
streptozotocin diabetic rats. Int. Jr. Pharmacol.
4(4): 292-296.
Papaccio G, Pisanti FA, Latronico MV, Ammendola E,
Galdieri M
(2000).Multiple low dose and single high dose
treatments with streptozotocin do not generate nitric oxide. J. Cell Biochem.
77:82-91.
Peters AL, Davidson MB, Schriger DL, Hasseblad V
(1996). A clinical
approach for the diagnosis of diabetes mellitus: an
analysis using glycosylated hemoglobin levels. Meta Analysis Research Group on
the
Diagnosis of Diabetes Using Glycosylated Hemoglobin
Levels. JAMA
276: 1246–1252.
Piedrola G, Novo E, Escober F, Garcia-Robles R
(2001). White blood
cell count and insulin resistance in patients with
coronary artery disease. Ann. Endocrinol. (Paris) 62: 7–10.
Purandare H, Supe A (2007). Immunomodulatory role of
Tinospora cordifolia as an adjuvant in surgical treatment of diabetic foot
ulcers: A
prospective randomized controlled study. Indian J.
Med. Sci. 61:347-
355.
Rathi SS, Grover JK, Vikrant V (2002). Prevention of
experimental
diabetic cataract by Indian Ayurvedic plant
extracts. Phytother. Res.
16:774–7.
Rawal AK, Muddeshwar MG, Biswas SK (2004). Rubia
cordifolia,
Fagonia cretica linn and Tinosporacordifolia exert
neuroprotection by
modulating the antioxidant system in rat hippocampal
slices subjected to oxygen glucose deprivation. BMC Compl. Altern. Med.
4:11.
Sekar N, Kanthasamy S, William S, Subramanian S,
Govindasamy S
(1990). Insulinic actions of vanadate in diabetic
rats. Pharmacol. Res.
22: 207-217.
Sharma AK (1993). In: Galadari EO, Behara I,
Manchandra M,
Abdulrazzaq SK, Mehra MK, (Eds.), Diabetes Mellitus
and Its Complications: An Update, 1st ed. Macmillan, New Delhi
Singh N, Singh SM, Shrivastava P (2004).
Immunomodulatory and antitumor actions of medicinal plant Tinosporacordifolia
are mediated
through activation of tumor-associated macrophages.
Immunopharmacol Immunotoxicol. 26: 145-62.
Singh N, Singh SM, Shrivastava P (2005). Effect of
Tinospora cordifolia
on the antitumor activity of tumor-associated
macrophages-derived
dendritic cells. Immunopharmacol Immunotoxicol. 27:
1-14.
Singh RP, Padmavathi B, Rao AR (2000). Modulatory
influence of
Adhatoda vesica (Justica adhatoda) leaf extract on
the enzyme of xenobiotic metabolism, antioxidant status and lipid peroxidation
in mice.
Molecular and Cellular Biochem. 213: 99-109.
Stanely Mainzen Prince P, Menon VP (2003).
Hypoglycaemic and hypolipidaemic action of alcohol extract of Tinospora
cordifolia roots in
chemical induced diabetes in rats. Phytother. Res.
17: 410-3.
Stanely P, Prince M, Menon VP (2000). Hypoglycaemic
and other related actions of Tinospora cordifolia roots in alloxan-induced
diabetic
rats. J. Ethnopharmacol. 70:9-15.
Tanaka Y, Atsumi Y, Matsukoa K, Mokubo A, Asahina T
(2001). Hosokawa K, Shimada S et al.: Usefulness of stable HbA(1c) for
supportive marker to diagnose diabetes mellitus in Japanese subjects.
Diabetes Res. Clin. Pract. 53: 41-45.
Taylor R, Agius L (1988). The Biochemistry of
diabetes. Biochem. J.
250:650–740.
Trinder P (1969). Determination of glucose using
glucose oxidase with
an alternative oxygen acceptor. Ann. Clin. Biochem.
6: 24-27.
Urger RH, Foster DW (1998). Diabetes mellitus. In: Wilson,
J. D., Foster, D.W., Kronenserg, H.M, Larson PR (Eds.), Williams’s Text Book
of Endocrinology. WB Saunders, Philadelphia,
pp.973–1060.
Wild SG, Roglic A, Green R, King H (2004). Global
prevalence of diabetes. Estimated for the year 2000 and projection for 2030.
Diabetes
Care 27: 1047-1054.
World Health Organization L (1980). Second Report of
the WHO Expert
Committee on Diabetes mellitus. Technical Report
Series. 646 : 66.
Yaryura-Tobias JA, Pinto A, Neziroglu F (2001).
Anorexia nervosa, diabetes mellitus, brain atrophy, and fatty liver. Inter. J.
Etiol. Disorders
30:350–353.
1. Ashcroft
FM, Gribble FM (1999) ATP-sensitive K+ channels and insulin secretion: their
role in health and disease. Diabetologia 42: 903–919.
2.
Nichols CG (2006) KATP channels as molecular sensors of cellular
metabolism. Nature 440: 470–476.
3.
Thomas PM, Cote GJ, Hallman DM, Mathew PM (1995) Homozygosity
mapping, to chromosome 11p, of the gene for familial persistent
hyperinsulinemic hypoglycemia of infancy. Am J Hum Genet 56: 416–421.
4.
Nestorowicz A, Wilson BA, Schoor KP, Inoue H, Glaser B, et al.
(1996) Mutations in the sulonylurea receptor gene are associated with familial
hyperinsulinism in Ashkenazi Jews. Hum Mol Genet 5: 1813–1822.
5.
Thomas P, Ye Y, Lightner E (1996) Mutation of the pancreatic
islet inward rectifier Kir6.2 also leads to familial persistent
hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet 5: 1809–1812.
6.
Nichols CG, Shyng SL, Nestorowicz A, Glaser B, Clement JP, et
al. (1996) Adenosine diphosphate as an intracellular regulator of insulin
secretion. Science 272: 1785–1787.
7.
Nestorowicz A, Inagaki N, Gonoi T, Schoor KP, Wilson BA, et al.
(1997) A nonsense mutation in the inward rectifier potassium channel gene,
Kir6.2, is associated with familial hyperinsulinism. Diabetes 46: 1743–1748.
8.
Aynsley-Green A, Polak JM, Bloom SR, Gough MH, Keeling J, et al.
(1981) Nesidioblastosis of the pancreas: definition of the syndrome and the
management of the severe neonatal hyperinsulinemic hypoglycemia. Arch Dis Child
56: 496–508.
9.
Huopio H, Shyng SL, Otonkoski T, Nichols CG (2002) K(ATP)
channels and insulin secretion disorders. Am J Physiol Endocrinol Metab 283:
E207–216.
10.
Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, et al.
(1998) Defective insulin secretion and enhanced insulin action in KATP
channel-deficient mice. Proc Natl Acad Sci U S A 95: 10402–10406.
11.
Shiota C, Larsson O, Shelton KD, Shiota M, Efanov AM, et al.
(2002) Sulfonylurea receptor type 1 knock-out mice have intact
feeding-stimulated insulin secretion despite marked impairment in their
response to glucose. J Biol Chem 277: 37176–37183.
12.
Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J (2000)
Sur1 knockout mice. A model for K(ATP) channel-independent regulation of
insulin secretion. J Biol Chem 275: 9270–9277.
13.
Koster JC, Remedi MS, Flagg TP, Johnson JD, Markova KP, et al.
(2002) Hyperinsulinism induced by targeted suppression of beta cell KATP
channels. Proc Natl Acad Sci U S A 99: 16992–16997.
14.
Remedi MS, Rocheleau JV, Tong A, Patton BL, McDaniel ML, et al.
(2006) Hyperinsulinism in mice with heterozygous loss of K(ATP) channels.
Diabetologia 49: 2368–2378.
15.
Cartier EA, Conti LR, Vandenberg CA, Shyng SL (2001) Defective
trafficking and function of KATP channels caused by a sulfonylurea receptor 1
mutation associated with persistent hyperinsulinemic hypoglycemia of infancy.
Proc Natl Acad Sci U S A 98: 2882–2887.
16.
Shyng SL, Ferrigni T, Shepard JB, Nestorowicz A, Glaser B, et
al. (1998) Functional analyses of novel mutations in the sulfonylurea receptor
1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes
47: 1145–1151.
17.
de Lonlay P, Fournet JC, Touati G, Groos MS, Martin D, et al.
(2002) Heterogeneity of persistent hyperinsulinaemic hypoglycaemia. A series of
175 cases. Eur J Pediatr 161: 37–48.
18.
Henwood MJ, Kelly A, MacMullen C, Bhatia P, Ganguly A, et al.
(2005) Genotype-phenotype correlations in children with congenital
hyperinsulinism due to recessive mutations of the adenosine
triphosphate-sensitive potassium channel genes. J Clin Endocrinol Metab 90:
789–794.
19.
Huopio H, Vauhkonen I, Komulainen J, Niskanen L, Otonkoski T, et
al. (2002) Carriers of an inactivating beta-cell ATP-sensitive K(+) channel
mutation have normal glucose tolerance and insulin sensitivity and appropriate
insulin secretion. Diabetes Care 25: 101–106.
20.
Grimberg A, Ferry RJ Jr., Kelly A, Koo-McCoy S, Polonsky K, et
al. (2001) Dysregulation of insulin secretion in children with congenital
hyperinsulinism due to sulfonylurea receptor mutations. Diabetes 50: 322–328.
21.
Huopio H, Reimann F, Ashfield R, Komulainen J, Lenko HL, et al.
(2000) Dominantly inherited hyperinsulinism caused by a mutation in the
sulfonylurea receptor type 1. J Clin Invest 106: 897–906.
22.
DeFronzo RA, Bonadonna RC, Ferrannini E (1992) Pathogenesis of
NIDDM. A balanced overview. Diabetes Care 15: 318–368.
23.
Weir GC, Laybutt DR, Kaneto H, Bonner-Weir S, Sharma A (2001)
Beta-cell adaptation and decompensation during the progression of diabetes.
Diabetes 50(Suppl 1): S154–159.
24.
Rifkin H (1991) Current status of non-insulin-dependent diabetes
mellitus (type II): management with gliclazide. Am J Med 90: 3S–7S.
25.
Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, et al.
(2003) Genetic cause of hyperglycaemia and response to treatment in diabetes.
Lancet 362: 1275–1281.
27.
Karam JH, Sanz N, Salamon E, Nolte MS (1986) Selective
unresponsiveness of pancreatic beta-cells to acute sulfonylurea stimulation
during sulfonylurea therapy in NIDDM. [erratum appears in Diabetes 1987 Mar; 36
(3): following 406]. Diabetes 35: 1314–1320.
28.
Filipponi P, Marcelli M, Nicoletti I, Pacifici R, Santeusanio F,
et al. (1983) Suppressive effect of long term sulfonylurea treatment on A, B,
and D cells of normal rat pancreas. Endocrinology 113: 1972–1979.
29.
Dunbar JC, Foa PP (1974) An inhibitory effect of tolbutamide and
glibenclamide (glyburide) on the pancreatic islets of normal animals.
Diabetologia 10: 27–35.
30.
Groop LC, Pelkonen R, Koskimies S, Bottazzo GF, Doniach D (1986)
Secondary failure to treatment with oral antidiabetic agents in
non-insulin-dependent diabetes. Diabetes Care 9: 129–133.
32.
Pontiroli AE, Calderara A, Pozza G (1994) Secondary failure of
oral hypoglycaemic agents: frequency, possible causes, and management. Diabetes
Metab Rev 10: 31–43.
33.
Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC (1998)
UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over
six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med 15: 297–303.
34.
Efanova IB, Zaitsev SV, Zhivotovsky B, Kohler M, Efendic S, et
al. (1998) Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A
process dependent on intracellular Ca2+ concentration. J Biol Chem 273:
33501–33507.
35.
Del Guerra S, Marselli L, Lupi R, Boggi U, Mosca F, et al.
(2005) Effects of prolonged in vitro exposure to sulphonylureas on the function
and survival of human islets. J Diabetes Complicat 19: 60–64.
36.
Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, et al. (2005)
Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin
Endocrinol Metab 90: 501–506.
37.
Kawaki J, Nagashima K, Tanaka J, Miki T, Miyazaki M, et al.
(1999) Unresponsiveness to glibenclamide during chronic treatment induced by
reduction of ATP-sensitive K+ channel activity. Diabetes 48: 2001–2006.
38.
Takahashi A, Nagashima K, Hamasaki A, Kuwamura N, Kawasaki Y, et
al. (2007) Sulfonylurea and glinide reduce insulin content, functional
expression of K(ATP) channels, and accelerate apoptotic beta-cell death in the
chronic phase. Diabetes Res Clin Pract 77: 343–350.
39.
Ball AJ, McCluskey JT, Flatt PR, McClenaghan NH (2004) Chronic
exposure to tolbutamide and glibenclamide impairs insulin secretion but not
transcription of K(ATP) channel components. Pharmacol Res 50: 41–46.
40.
Hambrock A, de Oliveira Franz CB, Hiller S, Osswald H (2006)
Glibenclamide-induced apoptosis is specifically enhanced by expression of the
sulfonylurea receptor isoform SUR1 but not by expression of SUR2B or the mutant
SUR1(M1289T). J Pharmacol Exp Ther 316: 1031–1037.
41.
Koster JC, Marshall BA, Ensor N, Corbett JA, Nichols CG (2000)
Targeted overactivity of beta cell K(ATP) channels induces profound neonatal
diabetes. Cell 100: 645–654.
42.
Remedi MS, Koster JC, Markova K, Seino S, Miki T, et al. (2004)
Diet-induced glucose intolerance in mice with decreased {beta}-cell
ATP-sensitive k+ channels. Diabetes 53: 3159–3167.
43.
Rocheleau JV, Remedi MS, Granada B, Head WS, Koster JC, et al.
(2006) Critical role of gap junction coupled KATP channel activity for
regulated insulin secretion. PLoS Biol 4: doi:10.1371/journal.pbio.0040026.
44.
Koster JC, Remedi MS, Dao C, Nichols CG (2005) ATP and
sulfonylurea sensitivity of mutant ATP-sensitive K+ channels in neonatal
diabetes: implications for pharmacogenomic therapy. Diabetes 54: 2645–2654.
45.
Hattersley AT, Ashcroft FM (2005) Activating mutations in Kir6.2
and neonatal diabetes: new clinical syndromes, new scientific insights, and new
therapy. Diabetes 54: 2503–2513.
46.
Nguyen QA, Antoine MH, Ouedraogo R, Hermann M, Sergooris J, et
al. (2002) In vitro and in vivo effects of new insulin releasing agents.
Biochem Pharmacol 63: 515–521.
47.
Guiot Y, Henquin JC, Rahier J (1994) Effects of glibenclamide on
pancreatic beta-cell proliferation in vivo. Eur J Clin Pharmacol 261: 157–161.
48.
Chen J, Jeppesen PB, Nordentoft I, Hermansen K (2006) Stevioside
counteracts the glyburide-induced desensitization of the pancreatic beta-cell
function in mice: studies in vitro. Metab Clin Exp 55: 1674–1680.
49.
Anello M, Gilon P, Henquin JC (1999) Alterations of insulin
secretion from mouse islets treated with sulphonylureas: perturbations of Ca2+
regulation prevail over changes in insulin content. Br J Pharmacol 127:
1883–1891.
50.
Zawalich WS (1989) Phosphoinositide hydrolysis and insulin
secretion in response to glucose stimulation are impaired in isolated rat
islets by prolonged exposure to the sulfonylurea tolbutamide. Endocrinology
125: 281–286.
51.
Bolaffi JL, Heldt A, Lewis LD, Grodsky GM (1986) The third phase
of in vitro insulin secretion. Evidence for glucose insensitivity. Diabetes 35:
370–373.
52.
Gullo D, Rabuazzo AM, Vetri M, Gatta C, Vinci C, et al. (1991)
Chronic exposure to glibenclamide impairs insulin secretion in isolated rat
pancreatic islets. J Endocrinol Invest 14: 287–291.
53.
Porzio O, Marlier LN, Federici M, Hribal ML, Magnaterra R, et
al. (1999) GLUT2 and glucokinase expression is coordinately regulated by
sulfonylurea. Mol Cell Endocrinol 153: 155–161.
55.
Szollosi A, Nenquin M, Henquin JC (2007) Overnight culture
unmasks glucose-induced insulin secretion in mouse islets lacking ATP-sensitive
K+ channels by improving the triggering Ca2+ signal. J Biol Chem 282:
14768–14776.
56.
Bretzel RG, Voigt K, Schatz H (1998) The United Kingdom
Prospective Diabetes Study (UKPDS) implications for the pharmacotherapy of type
2 diabetes mellitus. Exp Clin Endocrinol Diabetes 106: 369–372.
57.
Birkeland KI, Furuseth K, Melander A, Mowinckel P, Vaaler S
(1994) Long-term randomized placebo-controlled double-blind therapeutic
comparison of glipizide and glyburide. Glycemic control and insulin secretion
during 15 months. Diabetes Care 17: 45–49.
58.
Filipponi P, Gregorio F, Marcelli M, Cristallini S, Santeusanio
F, et al. (1989) Effects of long-term glibenclamide administration on gastrointestinal
and pancreatic hormones in normal fasting rats. Diabetes Res Clin Pract 6:
83–87.
59.
Ikeda T, Fujiyama K, Hoshino T, Takeuchi T, Mashiba H, et al.
(1990) Effect of long-term administration of insulin and glibenclamide on
pancreatic A and B cell function. Exp Clin Endocrinol 95: 237–241.
60.
Guldstrand M, Grill V, Bjorklund A, Lins PE, Adamson U (2002)
Improved beta cell function after short-term treatment with diazoxide in obese
subjects with type 2 diabetes. Diabetes Metab 28: 448–456.
61.
Torella R, Salvatore T, Cozzolino D, Giunta R, Quatraro A, et
al. (1991) Restoration of sensitivity to sulfonylurea after strict glycaemic
control with insulin in non-obese type 2 diabetic subjects. Diabete Metabol 17:
443–447.
62.
Melander A, Lebovitz HE, Faber OK (1990) Sulfonylureas. Why,
which, and how. Diabetes Care 13(Suppl 3): 18–25.
Ahren, B., Schmitz, O., 2004. GLP-1 receptor
agonists and DPP-4 inhibitors in
the treatment of type 2 diabetes. Horm. Metab. Res.
36, 867–876.
Ahren, B., Holst, J.J., Martensson, H., Balkan, B.,
2000. Improved glucose
tolerance and insulin secretion by inhibition of
dipeptidyl peptidase IV in
mice. Eur. J. Pharmacol. 404, 239–245.
Ahren, B., Simonsson, E., Larsson, H.,
Landin-Olsson, M., Torgeirsson, H.,
Jansson, P.A., Sandqvist, M., Bavenholm, P.,
Efendic, S., Eriksson, J.W.,
Dickinson, S., Holmes, D., 2002. Inhibition of
dipeptidyl peptidase IV
improves metabolic control over a 4-week study
period in type 2 diabetes.
Diabetes Care 25, 869–875.
Ahren, B., Gomis, R., Standl, E., Mills, D.,
Schweizer, A., 2004. Twelve-and
52-week efficacy of the dipeptidyl peptidase IV
inhibitor LAF237 in
metformin-treated patients with type 2 diabetes.
Diabetes Care 27,
2874–2880.
Ashcroft, F.M., Gribble, F.M., 1999. ATP-sensitive
K+ channels and insulin
secretion: their role in health and disease.
Diabetologia 42, 903–919.
Bailey, C.J., Flatt, P.R., 2003. Animal syndromes
resembling type 2 diabetes, In:
Pickup, J.C., Williams, G. (Eds.), Textbook of
Diabetes, 3rd edn. Blackwell,
Oxford, pp. 25.1–25.25.
Bailey, C.J., Flatt, P.R., Atkins, T.W., 1982.
Influence of genetic background and
age on the expression of the obese hyperglycaemic
syndrome in Aston ob/ob
mice. Int. J. Obes. 6, 11–21.
Balkan, B., Kwasnik, L., Miserendino, R., Holst,
J.J., Li, X., 1999. Inhibition of
dipeptidyl peptidase IV with NVP-DPP728 increases
plasma GLP-1 (7–36
amide) concentrations and improves oral glucose
tolerance in obese Zucker
rats. Diabetologia 42, 1324–1331.
Blickle, J.F., 2006. Meglitinide analogues: a review
of clinical data focused on
recent trials. Diabetes Metab. 32, 113–120.
Burington, R.S., 1973. Handbook of Mathematical
Tables and Formulas.
McGraw-Hill, New York.
Campbell, I.W., 2005. Nateglinide-current and future
role in the treatment of
patients with type 2 diabetes mellitus. Int. J.
Clin. Pract. 59, 1218–1228.
De Meester, I., Korom, S., Van Damme, J., Scharpe,
S., 1999. CD26, let it cut or
cut it down. Immunol. Today 20, 367–375.
Deacon, C.F., 2004. Therapeutic strategies based on
glucagon-like peptide 1.
Diabetes 53, 2181–2189.
Deacon, C.F., Wamberg, S., Bie, P., Hughes, T.E.,
Holst, J.J., 2002. Preservation of
active incretin hormones by inhibition of dipeptidyl
peptidase IV suppresses
meal-induced incretin secretion in dogs. J.
Endocrinol. 172, 355–362.
Dornhorst, A., 2001. Insulinotropic meglitinide
analogues. Lancet 358,
1709–1716.
Drucker, D.J., 2006. The biology of incretin
hormones. Cell. Metab. 3, 153–165.
Flatt, P.R., Bailey, C.J., 1981. Abnormal plasma
glucose and insulin responses in
heterozygous lean (ob/+) mice. Diabetologia 5,
573–577.
Fujiwara, K., Tsuru, D., 1978. New chromogenic and
fluorogenic substrates for
pyrrolidonyl peptidase. J. Biochem. 83, 1145–1149.
Gault, V.A., O'Harte, F.P.M., Harriott, P., Mooney,
M.H., Green, B.D., Flatt, P.R.,
2003. Effects of the novel (Pro
3
)GIP antagonist and exendin(9–39)amide on
GIP- and GLP-1-induced cyclic AMP generation,
insulin secretion and
postprandial insulin release in obese diabetic
(ob/ob) mice: evidence that
GIP is the major physiological incretin.
Diabetologia 46, 222–230.
Gerich, J., Raskin, P., Jean-Louis, L., Purkayastha,
D., Baron, M.A., 2005.
PRESERVE-beta: two-year efficacy and safety of
initial combination
therapy with nateglinide or glyburide plus
metformin. Diabetes Care 28,
2093–2099.
Green, B.D., Gault, V.A., O'Harte, F.P.M., Flatt,
P.R., 2004a. Structurally
modified analogues of glucagon-like peptide-1
(GLP-1) and glucosedependent insulinotropic polypeptide (GIP) as future
antidiabetic agents.
Curr. Pharm. Des. 10, 3651–3662.
Green, B.D., Mooney, M.H., Gault, V.A., Irwin, N.,
Bailey, C.J., Harriott, P.,
Greer, B., Flatt, P.R., O'Harte, F.P.M., 2004b. Lys
9
for Glu
9
substitution in
glucagon-like peptide-1(7–36)amide confers
dipeptidylpeptidase IV resistance with cellular and metabolic actions similar
to those of established
antagonists glucagon-like peptide-1(9–36)amide and
exendin (9–39).
Metabolism 53, 252–259.
Green, B.D., Flatt, P.R., Bailey, C.J., 2006a.
Inhibition of dipeptidyl peptidase
IV activity as a therapy of type 2 diabetes. Exp.
Opin. Emerg. Drugs 11,
525–539.
Green, B.D., Flatt, P.R., Bailey, C.J., 2006b.
Dipeptidylpeptidase IV (DPP IV)
inhibitors: a newly emerging drug class for the treatment
of type 2 diabetes.
Diabetes Vasc. Dis. Res. 3, 159–165.
Green, B.D., Duffy, N.A., Irwin, N., Gault, V.A.,
O’Harte, F.P.M., Flatt, P.R.,
2006c. Inhibition of dipeptidyl peptidase-IV (DPP
IV) activity by metformin
enhances the antidiabetic effects of glucagon-like
peptide-1 (GLP-1). Eur. J.
Pharmacol. 547, 192–199.
Gutniak, M.K., Juntti-Berggren, L., Hellstrom, P.M.,
Guenifi, A., Holst, J.J.,
Efendic, S., 1996. Glucagon-like peptide I enhances
the insulinotropic effect
of glibenclamide in NIDDM patients and in the
perfused rat pancreas.
Diabetes Care 19, 857–863.
Hansen, A.M., Christensen, I.T., Hansen, J.B., Carr,
R.D., Ashcroft, F.M., Wahl,
P., 2002. Differential interactions of nateglinide
and repaglinide on the
human beta-cell sulphonylurea receptor 1. Diabetes
51, 2789–2795.
Hansen, A.M., Hansen, J.B., Carr, R.D., Ashcroft,
F.M., Wahl, P., 2005. Kir6.2-
dependent high-affinity repaglinide binding to
beta-cell K(ATP) channels.
Br. J. Pharmacol. 144, 551–557.
Hazama, Y., Matsuhisa, M., Ohtoshi, K., Gorogawa,
S., Kato, K., Kawamori,
D., Yoshiuchi, K., Nakamura, Y., Shiraiwa, T.,
Kaneto, H., Yamasaki, Y.,
Hori, M., 2006. Beneficial effects of nateglinide on
insulin resistance in type
2 diabetes. Diabetes Res. Clin. Pract. 71, 251–255.
Hinke, S.A., Kuhn-Wache, K., Hoffmann, T., Pederson,
R.A., McIntosh, C.H.,
Demuth, H.U., 2002. Metformin effects on
dipeptidylpeptidase IV
degradation of glucagon-like peptide-1. Biochem.
Biophys. Res. Commun.
291, 1302–1308.
Hu, S., Boettcher, B.R., Dunning, B.E., 2003. The
mechanisms underlying the
unique pharmacodynamics of nateglinide. Diabetologia
46 (Suppl 1),
M37–M43.
Kieffer, T.J., Habener, J.F., 1999. The
glucagon-like peptides. Endocr. Rev. 20,
876–913.
(Contd.)
Comments