World Literature on Medicinal Plants from Pankaj Oudhia’s Medicinal Plant Database -25

World Literature on Medicinal Plants from Pankaj Oudhia’s Medicinal Plant Database -25

World Literature on Medicinal Plants Quoted/Consulted/Modified/Improved/Discussed/Used/Corrected in Pankaj Oudhia’s Medicinal Plant Database.

For details please visit http://www.pankajoudhia.com





1. Kopelman, P.G. Obesity as a medical problem. Nature 404, 635–643 (2000).
2. Flier, J.S. The adipocyte: Storage depot or node on the energy information superhighway? Cell 80, 15–18 (1995).
3. Trayhurn, P. & Beattie, J.H. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 60, 329–339 (2001).
4. Steppan, C.M. & Lazar, M.A. Resistin and obesity-associated insulin resistance.
Trends Endocrinol. Metab. 13, 18–23 (2002).
5. Boden, G. Pathogenesis of type 2 diabetes. Insulin resistance. Endocrinol. Metab.
Clin. North Am. 30, 801–815 (2001).
6. Roden, M. et al. Effects of free fatty acid elevation on postabsorptive endogenous
glucose production and gluconeogenesis in humans. Diabetes 49, 701–707 (2000).
7. Griffin, M.E. et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade.
Diabetes 48, 1270–1274 (1999).
8. Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.I. & Spiegelman, B.M. mPPAR-γ2:
Tissue-specific regulator of an adipocyte enhancer.  Genes Dev. 8, 1224–1234
(1994).
9. Chawla, A., Schwarz, E.J., Dimaculangan, D.D. & Lazar, M.A. Peroxisome proliferator-activated receptor γ (PPAR-γ): Adipose predominant expression and induction
early in adipocyte differentiation. Endocrinology 135, 798–800 (1994).
10. Barak, Y. et al. PPAR-γ is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585–595 (1999).
11. Rosen, E.D. et al. PPAR-γ is required for the differentiation of adipose tissue in vivo
and in vitro. Mol. Cell 4, 611–617 (1999).
12. Tontonoz, P., Hu, E., Devine, J., Beale, E.G. & Spiegelman, B.M. PPAR- γ 2 regulates
adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol. Cell. Biol.
15, 351–357 (1995).
13. Mandrup, S. & Lane, M.D. Regulating adipogenesis. J. Biol. Chem. 272, 5367–5370
(1997).
14. Rosen, E.D. et al. C/EBPα induces adipogenesis through PPAR-γ: a unified pathway.
Genes Dev. (in the press).
15. Yu, K. et al. Differential activation of peroxisome proliferator-activated receptors by
eicosanoids. J. Biol. Chem. 270, 23975–23983 (1995).
16. Forman, B.M.  et al. 15-deoxy, delta 12,14-prostaglandin J2 is a ligand for the
adipocyte determination factor PPAR-γ. Cell 83, 803–812 (1995).
17. Kliewer, S.A. et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor  γ and promotes adipocyte differentiation.  Cell 83, 813–819
(1995).
18. Lehmann, J.M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for
the nuclear peroxisome proliferator-activated receptor  γ (PPAR-γ).  J. Biol. Chem.
270, 12953–12956 (1995).
19. Mauvais-Jarvis, F., Andreelli, F., Hanaire-Broutin, H., Charbonnel, B. & Girard, J.
Therapeutic perspectives for type 2 diabetes mellitus: molecular and clinical insights. Diabetes Metab. 27, 415–23 (2001).
20. Zhang, B. et al. Down-regulation of the expression of the obese gene by an antidiabetic thiazolidinedione in Zucker diabetic fatty rats and db/db mice. J. Biol. Chem.
271, 9455–9459 (1996).
21. Kallen, C.B. & Lazar, M.A. Antidiabetic thiazolidinediones inhibit leptin (ob) gene
expression in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA 93, 5793–5796 (1996).
22. DeVos, P. et al. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor γ. J. Clin. Invest. 98, 1004–1009
(1996).
23. Maeda, N. et al. PPAR-γ ligands increase expression and plasma concentrations of
adiponectin, an adipose-derived protein. Diabetes 50, 2094–2099 (2001).
24. Steppan, C.M. et al. The hormone resistin links obesity to diabetes. Nature 409,
307–312 (2001).
25. Stumvoll, M. & Haring, H.U. Glitazones: Clinical effects and molecular mechanisms. Ann Med 34, 217–24 (2002).
26. Martin, G., Schoonjans, K., Lefebvre, A.M., Staels, B. & Auwerx, J. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPAR-α and PPAR-γ activators. J. Biol. Chem. 272, 28210–28217
(1997).
27. Nagy, L., Tontonoz, P., Alvarez, J.G., Chen, H. & Evans, R.M. Oxidized LDL regulates macrophage gene expression through activation of PPAR-γ. Cell 93, 229–240
(1998).
28. Steinberg, D., Vaughan, M. & Margolis, S. Studies of triacylglyceride biosynthesis
in homogenates of adipose tissue. J. Biol. Chem. 236, 1631–1637 (1961).
29. Jequier, E. & Tappy, L. Regulation of body weight in humans.  Physiol. Rev. 79,
451–80 (1999).
30. Matthews, C.K. & van Holde, K.E. Metabolic coordination, metabolic control, and
signal transduction. in  Biochemistry (eds. Matthews, C.K. & vanHolde, K.E.)
819–859 (Benjamin/Cummings, Menlo Park, 1996).
31. Li, Y. & Lazar, M.A. Differential gene regulation by PPAR-γ agonist and constitutively active PPAR-γ. Mol. Endocrinol. 16, 1040–1048 (2002).
32. Camp, H.S., Chaudhry, A. & Leff, T. A novel potent antagonist of peroxisome proliferator-activated receptor γ blocks adipocyte differentiation but does not revert
the phenotype of terminally differentiated adipocytes.  Endocrinology 142,
3207–3213 (2001).
33. Kliewer, S.A. et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and  γ.  Proc.
Natl. Acad. Sci. USA 94, 4318–4323 (1997).
34. Ibrahimi, A. et al. Evidence for a common mechanism of action for fatty acids and
thiazolidinedione antidiabetic agents on gene expression in preadipose cells. Mol.
Pharmacol. 46, 1070–1076 (1994).
35. Mukherjee, R. et al. A selective peroxisome proliferator-activated receptor γ modulator blocks adipocyte differentiation but stimulates glucose uptake in 3T3-L1
adipocytes. Mol. Endocrinol. 14, 1425–1433 (2000).
36. Schoonjans, K. et al. PPAR-α and PPAR-γ activators direct a distinct tissue-specific
transcriptional response via a PPRE in the lipoprotein lipase gene.  EMBO J. 15,
5336–48 (1996).
37. Noel, R.J., Antinozzi, P.A., McGarry, J.D. & Newgard, C.B. Engineering of glycerolstimulated insulin secretion in islet beta cells. Differential metabolic fates of glucose
and glycerol provide insight into mechanisms of stimulus-secretion coupling.  J.
Biol. Chem. 272, 18621–7 (1997).
38. Kishida, K. et al. Enhancement of the aquaporin adipose gene expression by a peroxisome proliferator-activated receptor γ. J. Biol. Chem. 276, 48572–48579 (2001).
39. Krusynska, Y.T. Normal metabolism: the physiology of fuel homeostasis. in
Textbook of Diabetes (eds. Pickup, J. & Williams, G.) 11.1–11.37 (Blackwell Science,
Oxford, 1997).
40. Felig, P. & Bergman, M. Physiology of fuel metabolism. in  Endocrinology and
Metabolism (eds. Felig, P., Baxter, J.D. & Frohman, L.A.) 1107–1156 (McGraw-Hill,
New York, 1995).
41. Souza, S.C., Yamamoto, M.T., Franciosa, M.D., Lien, P. & Greenberg, A.S. BRL
49653 blocks the lipolytic actions of tumor necrosis factor-α: A potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes 47, 691–695 (1998).
42. Gaudet, D. et al. Glycerol as a correlate of impaired glucose tolerance: dissection of
a complex system by use of a simple genetic trait.  Am. J. Hum. Genet. 66,
1558–1568 (2000).
43. Huq, A.H., Lovell, R.S., Ou, C.N., Beaudet, A.L. & Craigen, W.J. X-linked glycerol kinase deficiency in the mouse leads to growth retardation, altered fat metabolism,
autonomous glucocorticoid secretion and neonatal death.  Hum. Mol. Genet. 6,
1803–1809 (1997).
44. Kaplan, M.L. & Leveille, G.A. Development of lipogenesis and insulin sensitivity in
tissues of the ob/ob mouse. Am. J. Physiol. 240, E101–107 (1981).
45. Air, E.L. et al. Small molecule insulin mimetics reduce food intake and body weight
and prevent development of obesity. Nature Med. 8, 179–183 (2002).
46. Ruan, H. & Pownall, H.J. Overexpression of 1-acyl-glycerol-3-phosphate acyltransferase-α enhances lipid storage in cellular models of adipose tissue and skeletal
muscle. Diabetes 50, 233–240 (2001).
1) Part III: Matsuda H., Li Y., Murakami T., Matsumura N., Yamahara J.,
Yoshikawa M., Chem. Pharm. Bull., 46, 1399—1403 (1998).
2) Ismail T. S., Gopalakrishman J., Begun V. H., Elango V., J. Ethnopharmacol., 56, 145—152 (1997).
3) a) Yoshikawa M., Murakami T., Komatsu H., Yamahara J., Matsuda
H., Heterocycles, 47, 397—405 (1998); b) Yoshizumi S., Murakami T.,
Kadoya M., Matsuda H., Yamahara J., Yoshikawa M.,  Yakugaku
Zasshi,  118, 188—192 (1998);  c) Yoshikawa M., Murakami T., Komatsu H., Matsuda H., Chem. Pharm. Bull., 46, 812—816 (1998); d)
Komatsu H., Murakami T., Matsuda H., Yoshikawa M., Heterocycles,
48, 703—710 (1998);  e) Yoshikawa M., Murakami T., Shimada H.,
Fukada N., Matsuda H., Sashida Y., Yamahara J.,  Heterocycles,  48,
869—873 (1998); f ) Yoshikawa M., Murakami T., Shimada H.,
Yoshizumi S., Saka M., Yamahara J., Matsuda H., Chem. Pharm. Bull.,
46, 1008—1014 (1998); g) Yoshikawa M., Murakami T., Kadoya M.,
Yamahara J., Matsuda H., ibid., 46, 1758—1763 (1998).
4) a) Yoshikawa M., Shimada H., Nishida N., Li Y., Toguchida I., Yamahara J., Matsuda H.,  Chem. Pharm. Bull.,  46, 113—119 (1998);  b) Yoshikawa M., Murakami T., Yashiro K., Yamahara J., Matsuda H.,
Saijoh R., Tanaka O.,  ibid.,  46, 647—654 (1998);  c) Yoshikawa M.,
Murakami T., Yamahara J., Matsuda H., ibid., 46, 1764—1769 (1998);
d) Matsuda H., Li Y., Murakami T., Yamahara J., Yoshikawa M., Life
Sci.,  63, PL245—250 (1998);  e) Matsuda H., Murakami T., Li Y.,
Yamahara J., Yoshikawa M.,  Bioorg. Med. Chem.,  6, 1019—1023
(1998); f ) Matsuda H., Li Y., Murakami T., Yamahara J., Yoshikawa
M., Eur. J. Pharmacol., 368, 237—243 (1999); g) Matsuda H., Li Y.,
Yamahara J., Yoshikawa M., J. Pharmacol. Exp. Ther., 289, 729—734
(1999).
5) a) Yoshikawa M., Murakami T., Shimada H., Matsuda H., Yamahara J.,
Tanabe G., Muraoka O., Tetrahedron Lett., 38, 8367—8370 (1997); b)
Yoshikawa M., Murakami T., Yashiro K., Matsuda H., Chem. Pharm.
Bull., 46, 1339—1340 (1998).
6) Donaldo R., Frederick L. P.,  J. Chem. Soc., Chem. Commun.,  1980,
1048—1049.
7) Nozaki H., Suzuki H., Hirayama T., Kasai R., Wu R. Y., Lee K. H.,
Phytochemistry, 25, 479—485 (1986).
8) Kutney J. P., Hewitt G. M., Lee G., Piotrowska K., Roberts M., Rettig
S. J., Can. J. Chem., 70, 1455—1480 (1992).
9) Richard C. C., Robert E. C., David S., Phytochemistry, 23, 333—336
(1984).
10) Richard C. C., Robert E. C., Kevin D. C., David S., Phytochemistry,
22, 1163—1166 (1983).
11) Monache F. D., Pomponi M., Marini-Bettolo G. B., D’Albuquerque I.
L., Goncalves de Lima O., Phytochemistry, 15, 573—574 (1976).
12) a) Brown R. J., Serro R. T.,  J. Am. Chem. Soc.,  75, 1040—1042
(1952);  b) Schweizer T. F., Horman I., Carbohydr. Res.,  95, 61—71
(1987).
13) Baruah P., Baruah C. N., Sharma R. P., Baruah J. N., Kulanthaivel P.,
Herz W., Phytochemistry, 22, 1741—1744 (1983).
14) a) Allerhand A., Doddrell D.,  J. Am. Chem. Soc.,  75, 1040—1042
(1952); b) Gilardi R. D., Flippen J. L., ibid., 97, 6264—6266 (1975).
15) The
1
H- and
13
C-NMR spectra were assigned on the basis of homoand hetero-correlation spectroscopy (
1
H–
1
H,
1
H–
13
C COSY) and heteronuclear multiple bond connectivity (HMBC) experiments.
16) a) Dunnett C. W., J. Am. Statist. Assoc., 75, 789—795 (1980); b) Idem,
ibid., 75, 796—800 (1980).
17) Kessler M., Acuto O., Storelli C., Murer H., Muller M., Semenza G.,
Biochim. Biophys. Acta, 506, 136—154 (1978).
18) Dahlqvist A., Anal. Biochem., 7, 18—25 (1964).
19) Dufrane S. P., Malaisse W. J., Sener A., Biochem. Med., 32, 99—105
(1984).
1.  Chandra A, Singh RK, Tewari L, et al. Antioxidative potential of herbal
hypoglycemic agents in diabetes – an overview. SFRR-India Bulletin
2004; 3:24-6.
2.  Rang HP, Dale MM. The Endocrine System Pharmacology. 2nd ed.
Harlow: Longman , UK, 1991: 504.
3.  Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic
potential. J Ethnopharmacol 2002; 81:81-100.
4.  Shu YZ. Recent natural products based drug development:
a pharmaceutical industry perspective. J Nat Prod 1998; 61:1053-71.
5.  Day C. Traditional plant treatments for diabetes mellitus: pharmaceutical
foods. Br J Nutr 1998; 80:5-6.
6.  Ceriello A. Oxidative stress and glycemic regulation. Metabolism 2000;
49:27-9.
7.  Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early
glycation products: a mechanism for accelerated atherogenesis in diabetes.
Biochem Biophys Res Commun 1990; 173:932-8.
8.  McLennan SV, Heffernan S, Wright L, et al. Changes in hepatic glutathione
metabolism in diabetes. Diabetes 1991; 40:344-8.
9.  Strain JJ. Disturbances of micronutrient and antioxidant status in diabetes.
Proc Nutr Soc 1991; 50:591-604.
10. Baynes JW. Role of oxidative stress in development of complications in
diabetes. Diabetes 1991; 40:405-12.
11. Soto C, Recoba R, Barron H, Alvarez C, Favari L. Silymarin increases
antioxidant enzymes in alloxan-induced diabetes in rat pancreas. Comp
Biochem Physiol C Toxicol Pharmacol 2003; 136:205-12.
12. Cunningham JJ. Micronutrients as nutriceutical interventions in diabetes
mellitus. J Am Coll Nutr 1998; 17:7-12.
13. Larson RA. The antioxidants of higher plants. Phytochem 1988; 27: 969-78.
14. Asolkar LV, Kakkar KK, Chakre OJ. Glossary of Indian Medicinal Plants
with Active Principle. New Delhi: Publication and Information Directorate
1992: 72-3. 
15. Atique A, Iqbal M, Ghouse AKM. Use of Annona squamosa and Piper
nigrum against diabetes. Fitoterapia 1985; 56:190-2.
16. Kaleem M, Sheema, Sarmad H, Bano B. Protective effects of Piper
nigrum and Vinca rosea in alloxan induced diabetic rats. Indian J Physiol
Pharmacol 2005; 49:65-71.
17. Sunanda P, Anand K. Possible amelioration of hyperthyroidism by the leaf
extract of Annona squamosa. Curr Sci 2003; 84:1402-4.
18. Williams JB. Adverse effects of thyroid hormones. Drug Aging 1997;
11:460-9.
19. Shirwaikar A, Rajendran K, Kumar D. Antidiabetic activity of aqueous
leaf extract of Annona squamosa in streptozotocin nicotinamide type-2
diabetic rats. J Ethnopharmacol 2004; 91:171-5.
20. Sekar N, Kanthasamy S, William S, Subramanian S, Govindasamy
S. Insulinic actions of vanadate in diabetic rats. Pharmacol Res 1990;
22:207-17.
21. Gupta S, Kataria M, Gupta PK, Murganandan S, Yashroy RC. Protective
role of extracts of neem seeds in diabetes caused by streptozotocin in
rats. J Ethnopharmocol 2004; 90:185-9.
22. Sasaki T, Matsy S, Sonae A. Effect of acetic acid concentration on the
colour reaction in the O-toluidine boric acid method for blood glucose
estimation. Rinsh Kagaku 1972; 1:346-53.
23. Drabkin DL, Austin JM. Spectrophotometric constants for common
haemoglobin derivatives in human, dog and rabbit blood. J Biol Chem
1932; 98:719-33.
24. Nayak SS, Pattabiraman TN. A new colorimetric method for the
estimation of glycosylated hemoglobin. Clin Chem Acta 1981;
109:267-74.
25. Friedewald WT, Levi RI, Fredrickson DS. Estimation of concentration
of low-density lipoprotein cholesterol in plasma without use of the
preparative ultracentrifuge. Clin Chem 1972; 18:499-502.
26. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues
by thiobarbituric acid reaction. Anal Biochem 1979; 95:351-8.
27. Jiang ZY, Hunt JV, Woff SP. Ferrous ion oxidation in the presence of
xylenol orange for detection of lipid peroxide in low density lipoprotein.
Anal Biochem 1992; 202:384-9.
28. Sedlak J, Lindsay RH. Estimation of total, protein-bound and nonprotein
sulfhydryl groups in tissue with Ellmanʼs reagent. Anal Biochem 1968;
25:192-205.
29. Marklund S, Marklund G. Involvement of the superoxide anion radical
in the autooxidation of pyrogallol and a convenient assay for superoxide
dismutase. Eur J Biochem 1974; 47:469-74.
30. Lawrence RA, Burk RF. Glutathione peroxidase activity in seleniumdeficient rat liver. Biochem Biophys Res Commun 1976; 71:952-8.
31. Aebi H. Catalase. In: Bergmeyer HU, ed. Methods of Enzymatic
Analysis. New York: Chemic Academic Press, 1974: 673-85.
32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement
with the Folin phenol reagent. J Biol Chem 1951; 193:265-75.
33. Padmini K, Chakrabarti CH. Effects of Bittergourd (Momordica
charantia) seed and glibenclamide in streptozotocin-induced diabetes
mellitus. Indian J Exp Biol 1982; 20:232-5.
34. Grover JK, Vats V, Rathi SS. Anti-hyperglycemic effect of Eugenia
jambolana and Tinospora cordifolia in experimental diabetes and their
effects on key metabolic enzymes involved in carbohydrate metabolism.
J Ethnopharmacol 2000; 73:461-70.
35. Pari L, Uma Maheswari J. Antihyperglycaemic activity of  Musa
sapientum flowers: effect on lipid peroxidation in alloxan diabetic rats.
Phytother Res 2000; 14:136-8.
36. Stanley P, Prince M, Menon VP. Hypoglycaemic and other related
actions of  Tinospora cordifolia in alloxan-induced diabetic rats. J
Ethnopharmacol 2000; 70:9-15.
37. Al-yassin D, Ibrahim, K. A minor haemoglobin fraction and the level of
fasting blood glucose. J Fac Med Baghdad 1981; 23:373-80.
38. Koening RL, Peterson CM, Jones RL, et al. Correlation of glucose
regulation and haemoglobin AIc in diabetes mellitus. New Engl J Med
1976; 295:417-20.
39.  Rajalingam R, Srinivasan N, Govindarajulu P. Effect of alloxan induced
diabeties on lipid profiles in renal cortex and medulla of mature albino
rats. Indian J Exp Biol 1993; 31:577-9
40. Pathak RM, Ansari S, Mahmood A. Changes in chemical composition of
intestinal brush border membrane in alloxan induced chronic diabetes.
Indian J Exp Biol 1981; 19:503-5.
41. Oberley LW. Free radicals and diabetes. Free Radic Biol Med 1988; 5:
113-24.
42. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine.
2nd ed. Oxford: Clarendon Press, 1989.
43. Yam J, Frank l, Roberts RJ. Oxygen toxicity: comparison of lung
biochemical responses in neonatal and adult rats. Pediatr Res 1978;
12:115-9.
44. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic
vascular complications. Diabetes Care 1996; 19:257-67. Comment in:
Diabetes Care 1996; 19:1165. Diabetes Care 1997; 20:1338-9. Diabetes
Care 1998; 21:326-7.
45. McLennan SV, Heffernan S, Wright L, et al. Changes in hepatic
glutathione metabolism in diabetes. Diabetes 1991; 40:344-8.
46. Inove M, Saito Y, Hirato E, et al. Regulation of redox status of plasma
proteins by mechanism and transport of glutathione and related
compounds. J Protein Chem 1987; 36:169-73.
2. Boynes JW. Role of oxidative stress in development
of complication in diabetes. Diabetes 1991; 40: 405–
411.
3. Jacqueline MS, Jongsoon L, Paul FP. Tumor
necrosis factor--induced insulin resistance in 3T3-
L1 adipocytes is accompanied by a loss of insulin
receptor substrate-1 and GLUT4 expression
without a loss of insulin receptor-mediated signal
transduction. J Biol Chem 1997; 272(2): 971–976.
4. Sabu MC, Kuttan R. Anti-diabetic activity of some
medicinal plants-relation with their antioxidant
property.  Amala Research Bulletin 2000; 20: 81–
86.
5. Halliwell B, Gutteridge JMC. Free radical in
biology and medicine Oxford Clarendon Press, 1985;
279–313.
6. Trinder P. Determination of blood glucose using
an oxidase-peroxidase system with a noncarcinogenic chromogen.  J Clin Pathol 1969; 22:
158–161.
7. Ohkawa H, Ohishi N, Yagi K. Assay for lipid
peroxides in animal tissues by thiobarbituric acid
reaction. Anal Biochem 1979; 95: 351–358.
8. Satoh K. Serum lipid peroxide in cerebrovascular
disorders determined by a new colorimetric
method. Clinica Chemica Acta 1978; 90: 37–43.
9. Recknagel RO, Ghoshal AK. Lipid peroxidation as
a vector in carbon tetrachloride hepatotoxicity. Lab
Invest 1996; 15: 132–135.
10. Buege AJ, Aust SD. Microsomal lipid peroxidation.
In: Methods in enzymology. New York, Academic
Press, 1985, 87–92.
11. Moron MA, DePierre JW, Mannervick B. Levels of
glutathione, glutathione reductase and glutathiones-transferase activities in rat liver.  Biochem
Biophys Acta 1979; 582: 67–68.
12. Minami M, Yoshikawa H. A simplified assay method
of superoxide dismutase activity for clinical use.
Clinica Chemica Acta 1979; 92: 337–342.
13. McCord JM, Fridovich I. Superoxide dismutase: an
enzymatic function of erythrocuprein. J Biol Chem
1969; 244: 6049–6055.
14. Aebi H. Catalase. In: Bergmeyer HU (ed). Methods
in Enzymatic analysis, New York, Academic Press,
1983; vol. 3: 276–286.
15. Racker E. Glutathione reductase (liver and yeast).
In: Sidney PC, Nathan OK, eds. Methods in
enzmology, New York, Academic Press, 1955;
722–725.
16. Paglia DE, Valentine WW. Studies on the
qualitative and quantitative characterization of
erythrocytes glutathione peroxides. J Lab Clin Med
1967; 70: 158–159.
17. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ.
Protein measurement with Folin phenol reagent. J
Biol Chem 1951; 193: 265–275.
18. Carman RH. Hand book of medical laboratory
technology, 2nd ed. Christian Medical Association
of India, Bangalore, D Manoharan, ed. 1993, 117–
123.
19. Karpen CW,  Pritchard KA Jr. Merola AJ,
Panganamala RV. Alterations of the prostaglandin
thromboxane ratio in streptozotocin induced
diabetic rats. Prostagland Leukotrien Med 1982; 8:
93–103.
20. Maxwell SRJ, Thomson H, Sandler D, LeGuen C,
Baxtex AM, Thorpe GHG, Jones AF, Barnett AH
Poor glycemic control is associated with reduced
serum free radical scavenging (antioxidant) activity
in non-insulin dependent diabetes mellitus. Annal
Clin Biochem 1997; 34: 638–644.
21. Krishnakumar K, Augusti KT, Vjayammal, PL.
Hypoglycaemic and anti-oxidant activity of Salacia
oblonga wall. Extract in streptozotocin-induced
diabetic rats.  Indian J Physiol Pharmacol 1999;
43(3): 510–514.
1. Lebovitz HE. (1990) Oral hypoglycemic agents.
In: Rifkin H, Porte D. (eds.)  Ellenberg and
Rifkin’s Diabetes mellitus. Theory and Practise. Elsevier, New York, pp. 554–574.
2. Ashcroft SJH, Ashcroft FM. (1992) The sulfonylurea receptor. Biochim. Biophys. Acta 1175: 45–59.
3. Philipson LH. (1995) ATP-sensitive K

channels: paradigm lost, paradigm regained. Science
270: 1159.
4. Aguilar-Bryan L, Bryan J. (1999) Molecular
biology of adenosine triphosphate-sensitive
potassium channels. Endocr. Rev. 20: 101–135.
5. Tabuchi H, Yamamoto H, Matsumoto K, et al.
(2000) Regulation of insulin secretion by
overexpression of Ca
2
/calmodulin-dependent
protein kinase II in insulinoma MIN6 cells. Endocrinology 141: 2350–2360.
6. Easom RA. (1999) CaM kinase II: a protein kinase with extraordinary talents germane to
insulin exocytosis. Diabetes 48: 675–684.
7. Popoli M. (1993) Synaptotagmin is endogenously phosphorylated by Ca
2
/calmodulin
protein kinase II in synaptic vesicles. FEBS Lett.
317: 85–88.
8. Matsumoto K, Ebihara K, Yamamoto H, et al.
(1999) Cloning from insulinoma cells of
synapsin I associated with insulin secretory
granules. J. Biol. Chem. 274: 2053–2059.
9. Mshlig M, Wolter S, Mayer P, et al. (1997) Insulinoma cells contain an isoform of Ca
2
/
calmodulin-dependent protein kinase II

 associated with insulin secretion vesicles. Endocrinology
138: 2577–2584.
10. Skeer JM, Degano P, Coles B, Potier M, Ashcroft
FM, Ashcroft SJH. (1994) Determination of the
molecular mass of the native beta-cell sulfonylurea receptor. FEBS Lett. 338: 98–102.
11. Bryan J, Aguilar-Bryan L. (1999) Sulfonylurea
receptors: ABC transporters that regulate ATPsensitive K

channels.  Biochim. Biophys. Acta
1461: 285–303.
12. Clement IV JP, Kunjilwar K, Gonzalez G, et al.
(1997) Association and stoichiometry of KATP
channel subunits. Neuron 18: 827–838.
13. Bryan LA, Nichols CG, Wechsler SW, et al.
(1995) Cloning of the  cell high-affinity
sulfonylurea receptor: a regulator of insulin
secretion. Science 268: 423–426.
14. Inagaki N, Gonoi T, Clement JP, et al. (1996)
Reconstitution of IKATP: an inward rectifier
subunit plus the sulfonylurea receptor.  Science
270: 1167–1170.
15. Ueda K, Komine J, Matsuo M, Seino S, Amachi
T. (1999) Cooperative binding of ATP and
MgADP in the sulfonylurea receptor is modulated by glibenclamide. Proc. Natl. Acad. Sci. USA
96: 1268–1272.
16. Babenko AP, Aguilar-Bryan L, Bryan J. (1998)
A view of SUR/KIR6.X, KATP channels. Annu.
Rev. Physiol. 60: 667–687.
17. Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft
FM. (1999) Identification of the high-affinity
tolbutamide site on the SUR1 subunit of the
K(ATP) channel. Diabetes 48: 1341–1347.
18. Babenko AP, Gonzalez G, Bryan J. (1999) The
tolbutamide site of SUR1 and a mechanism for
its functional coupling to KATP channel closure.
FEBS Lett. 459: 367–376.
19. Aguilar-Bryan L, Clement JP, Gonzalez G,
Kunjilwar K, Babenko A, Bryan J. (1998) Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78: 227–245.
20. Uhde I, Toman A, Gross I, Schwanstecher C,
Schwanstecher M. (1999) Identification of the
potassium channel opener site on sulfonylurea
receptors. J. Biol. Chem. 274: 28079–28082.
21. Thomas PM, Cote GJ, Wohlik N, et al. (1995)
Mutations in the sulfonylurea receptor gene in
familial hyperinsulinemic hypoglycemia of infancy. Science 268: 426–429.
22. Thomas P, Ye Y, Lightner E. (1996) Mutations
of the pancreatic islet inward rectifier also lead
to familial persistent hyperinsulinemic hypoglycemia of infancy.  Hum. Mol. Gen. 5: 1809–
1812.
23. Kane C, Shepherd RM, Squires PE, et al. (1996)
Loss of functional KATP channels in pancreatic
cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nature Med. 2: 1344–1347.
24. Gribble FM, Tucker SJ, Ashcroft FM. (1997)
The essential role of the Walker A motifs of
SUR1 in K-ATP channel activation by MgADP
and diazoxide. EMBO J. 16: 1145–1152.
25. Nichols CG, Shyng S-L, Nestorowicz A. (1996)
Adenosine diphosphate as an intracellular
regulator of insulin secretion.  Science 272:
1785–1787.
26. Shyng S-L, Ferrigni T, Sheppard JB. (1998)
Functional analysis of novel mutations in the
sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes 47: 1145–1151.
27. Müller G, Hartz D, Pünter J, Ökonomopulos R,
Kramer W. (1994) Differential interaction of
glimepiride and glibenclamide with the -cell
sulfonylurea receptor: I. Binding characteristics. Biochim. Biophys. Acta 1191: 267–277.
28. Kramer W, Müller G, Girbig F, et al. (1995) The
molecular interaction of sulfonylureas with -
cell ATP-sensitive K

-channels.  Diabetes Res.
Clin. Pract. 28 (Suppl.): S67–S80.
29. Kramer W, Müller G, Girbig F, et al. (1994) Differential interaction of glimepiride and glibenclamide with the -cell sulfonylurea receptor:
II. Photoaffinity labeling of a 65-kDa protein
with [
3
H]glimepiride.  Biochim. Biophys. Acta
1191: 278–290.
30. Kramer W, Geisen K, Müller G. (1996) Characterization of the molecular mode of action of
the sulfonylurea, glimepiride, at pancreatic -
cells. Horm. Metab. Res. 28: 464–468.
31. Kramer W, Ökonomopulos R, Pünter J, Summ
H-D. (1988) Direct photoaffinity labeling of the
putative sulfonylurea receptor in rat -cell tumor membranes by [
3
H]glibenclamide  FEBS
Lett. 229: 355–359.
32. Ashcroft FM. (1996) Mechanisms of the glycaemic effects of sulfonylureas.  Horm. Metab.
Res. 28: 456–463.
33. Ashcroft FM, Gribble FM. (1999) ATP-sensitive
K

channels and insulin secretion: their role in
health and disease. Diabetologia 42: 903–919.
34. Draeger E. (1995) Clinical profile of glimepiride.
Diabetes Res. Clin. Pract. 28: S139–S146.
35. Langtry HD, Balfour JA. (1998) Glimepiride—
a review of its pharmacological and clinical ef-
ficacy in the management of type 2 diabetes
mellitus. Drugs 55: 563–584.
36. Tsumura K. (1995) Clinical evaluation of
glimepiride (HOE490) in NIDDM, including a
double blind comparative study versus gliclazide. Diabetes Res. Clin. Pract. 28: S147–S149.
37. Dills DG, Schneider J, Glimepiride/Glyburide
Research Group. (1996) Clinical evaluation of
glimepiride versus glyburide in NIDDM in a
double-blind comparative study.  Horm. Metab.
Res. 28: 426–429.
38. Draeger KE, Wernicke-Panten K, Lomp HJ.
(1996) Long-term treatment of type 2 diabetic
patients with a new oral anti-diabetic agent
glimepiride (Amaryl): a double-blind comparison with glibenclamide. Horm. Metab. Res. 28:
419–425.
39. Müller G, Satoh Y, Geisen K. (1995) Extrapancreatic effects of sulfonylureas - a comparison
between glimepiride and conventional sulfonylureas. Diabetes Res. Clin. Pract. 28 (Suppl.):
S115–S137.
40. Müller G, Geisen K. (1996) Characterization of
the molecular mode of action of the sulfonylurea, glimepiride, at adipocytes. Horm. Metab.
Res. 28: 469–487.
41. Geisen K. (1988) Special pharmacology of the
new sulfonylurea glimepiride.  Drug. Res. 38:
1120–1130.
42. Müller G, Wied S, Wetekam E-M, Crecelius A,
Unkelbach A, Pünter J. (1994) Stimulation of
glucose utilization in 3T3 adipocytes and rat
diaphragm in vitro by the sulfonylureas,
glimepiride and glibenclamide, is correlated
with modulations of the cAMP regulatory cascade. Biochem. Pharmacol. 48: 985–996.
43. Davidson MB, Molnar G, Furman A, Yamaguchi D. (1991) Glyburide-stimulated glucose
transport in cultured muscle cells via protein
kinase C-mediated pathway requiring new
protein synthesis. Diabetes 40: 1531–1538.
44. Rogers BJ, Standaert ML, Pollet RJ. (1987) Direct
effects of sulfonylurea agents on glucose transport BC3H-1 myocyte. Diabetes 36: 1292–1296.
45. Bak JF, Schmitz O, Sorensen NS, Pedersen O.
(1989) Post-receptor effects of sulfonylurea on
skeletal muscle glycogen synthase activity in
type II diabetic patients. Diabetes 38: 1343–1350.
46. Jacobs DB, Jung CY. (1985) Sulfonylurea potentiates insulin-induced recruitment of glucose transport carrier in rat adipocytes. J. Biol.
Chem. 260: 2593–2596.
47. Altan N, ALtan VM, Mikolay L, Larner
J, Schwartz CFW. (1985) Insulin-like and
insulin-enhancing effects of the sulfonylurea
glyburide on rat adipose glycogen synthase. Diabetes 34: 281–286.
48. Jacobs DB, Jung CY. (1985) Sulfonylurea potentiates insulin-induced recruitment of glucose transport carrier in rat adipocytes. J. Biol.
Chem. 260: 2593–2596.
49. Martz A, Jo I, Jung CY. (1988) Sulfonylurea
binding to adipocyte membrane and potentiation of insulin stimulated hexose transport.  J.
Biol. Chem. 264: 13672–13678.
50. Maloff BL, Lockwood DH. (1981) In vitro effects of a sulfonylurea on insulin action in
adipocytes. J. Clin. Invest. 68: 85–90.
51. Müller G, Wied S. (1993) The sulfonylurea drug,
glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in
vitro. Diabetes 42: 1852–1867.
52. Pessin JE, Thurmond DC, Elmendorf JS, Coker
KJ, Okada S. (1999) Molecular basis of
insulin-stimulated GLUT4 vesicle trafficking.
J. Biol. Chem. 274: 2593–2596.
53. Holman GD, Kasuga M. (1997) From receptor
to transporter: insulin signalling to glucose
transport. Diabetologia 40: 991–1003.
54. Czech MP, Corvera S. (1999) Signaling mechanisms that regulate glucose transport.  J. Biol.
Chem. 274: 1865–1868.
55. Bähr M, v. Holtey M, Müller G, Eckel J. (1995)
Direct stimulation of myocardial glucose transport and glucose transporter (Glut1) and Glut4
protein expression by the sulfonylurea
glimepiride. Endocrinology 136: 2547–2553.
56. Eckel J. (1996) Direct effects of glimepiride on
protein expression of cardiac glucose transporters. Horm. Metab. Res. 28: 508–511
57. Gustafson TA, Moodie SA, Lavan BE. (1999)
The insulin receptor and metabolic signaling.
In: Blaustein, Greger, Grunicke, et al (eds.) Reviews in Physiology, Biochemistry and Pharmacology,
vol. 137. Springer, Berlin, pp. 71–192.
58. White MF. (1997) The insulin signalling system
and the IRS proteins. Diabetologia 40: S2–S17.
59. White MF. (1998) The IRS-signalling system: a
network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 182: 3–11.
60. Coffer PJ, Jin J, Woodgett JR. (1998) Protein
kinase B (c-Akt): a multifunctional mediator of
phosphatidyl 3-kinase activation.  Biochem. J.
335: 1–13.
61. Cohen P, Alessi DR, Cross DAE. (1997) PDK1,
one of the missing links in insulin signal transduction? FEBS Lett. 410: 3–10.
62. White MF. (1998) The IRS-signalling system: a
network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 182: 3–11.
63. Shepherd PR, Withers DJ, Siddle K. (1998)
Phosphoinositide 3-kinase: the key switch
mechanism in insulin signalling.  Biochem. J.
333: 471–490.
64. Nystrom FH, Quon MJ. (1999) Insulin signalling: Metabolic pathways and mechanisms
for specificity. Cell. Signal. 11: 563–574.
65. Araki E, Lipes MA, Patti ME, et al. (1994) Alternative pathway of insulin signaling in mice
with targeted disruption of the IRS-1 gene.
Nature 372: 186–190.
66. Tamemoto H, Kadowaki T, Tobe K, et al. (1994)
Insulin resistance and growth retardation in
mice lacking insulin receptor substrate-1.  Nature 372: 182–186.
67. Withers DJ, Gutierrez JS, Towery H, et al.
(1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391: 900–904.
68. Lavan BE, Fantin VR, Chang ET, Lane WS,
Keller SR, Lienhard GE. (1997) A novel 160-
kDa phosphotyrosine protein in insulintreated embryonic kidney cells is a new member of the insulin receptor substrate family.  J.
Biol. Chem. 272: 21403–21407.
69. Liu SCH, Wang Q, Lienhard GE, Keller SR.
(1999) Insulin receptor substrate 3 is not essential for growth or glucose homeostasis.  J.
Biol. Chem. 274: 18093–18099.
70. Takada Y, Takata Y, Iwanishi M, et al. (1996) Effect of glimepiride (HOE490) on insulin receptors of skeletal muscles from genetically diabetic
KK-Ay mouse. Eur. J. Pharmacol. 308: 205–210.
71. Nosjean O, Briolay A, Roux B. (1997) Mammalian GPI proteins: sorting, membrane residence and functions. Biochim. Biophys. Acta 1331:
153–186.
72. Müller G, Wetekam E-A, Jung C, Bandlow W.
(1994) Membrane association of lipoprotein lipase and a cAMP-binding ectoprotein in rat
adipocytes. Biochemistry 33: 12149–12159.
73. Müller G, Dearey E-A, Pünter J. (1993) The
sulfonylurea drug, glimepiride, stimulates
release of glycosyl-phosphatidylinositolanchored plasma membrane proteins from
3T3 adipocytes. Biochem. J. 289: 509–521.
74. Saltiel AR, Fox JA, Sherline P, Cuatrecasas P.
(1986) Insulin stimulates the generation from
hepatic plasma membranes of modulators derived from an inositol glycolipid.  Science 233:
967–972.
75. Romero GL, Luttrell L, Rogol A, Zeller K, Hewlett
E, Larner J. (1988) Phosphatidylinositol-glycan
anchors of membrane proteins: potential precursors of insulin mediators.  Science 240: 509–
511.
76. Müller G, Dearey E-A, Korndörfer A, Bandlow
W. (1994) Stimulation of a glycosyl-phosphatidylinositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat
adipocytes depends on increased glucose transport. J. Cell Biol. 126: 1267–1276.
77. Movahedi S, Hooper N. (1997) Insulin stimulates the release of the glycosyl phosphatidylinositol-anchored membrane dipeptidase from 3T3-L1 adipocytes through the
action of a phospholipase C. Biochem. J. 326:
531–537.
78. Anderson RGW. (1998) The caveolae membrane system. Annu. Rev. Biochem. 67: 199–225.
79. Lisanti MP, Scherer PE, Tang ZL, Sargiacomo
M. (1994) Caveolae, caveolin and caveolin-rich
membrane domains: A signaling hypothesis.
Trends Cell Biol. 4: 231–235.
80. Rothberg KG, Henser JE, Donzell WC, Ying YS, Glenney JR, Anderson RGW. (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68: 673–682.
81. Parton RG. (1996) Caveolae and caveolins.
Curr. Opin. Cell Biol. 8: 542–548.
82. Kurzchalia TV, Dupree P, Monier S. (1994)
VIP-21 Caveolin, a protein of the trans-Golgi
network and caveolae.  FEBS Lett. 346: 88–
91.
83. Das K, Lewis RY, Scherer PE, Lisanti MP.
(1999) The membrane-spanning domains of
caveolins-1 and -2 mediate the formation of
caveolin hetero-oligomers.  J. Biol. Chem. 274:
18721–18728.
84. Sargiacomo M, Scherer PE, Tang Z, Kübler E,
Song KS, Sanders MC. (1995) Oligomeric
structure of caveolin: Implications for caveolae
membrane organizations.  Proc. Natl. Acad. Sci.
USA 92: 9407–9411.
85. Brown DA, London E. (1997) Breakthroughs
and views. Structure of detergent-resistant
membrane domains: does phase separation occur in biological membranes? Biochem. Biophys.
Res. Commun. 240: 1–7.
86. Okamoto T, Schlegel A, Scherer PE, Lisanti
MP. (1998) Caveolins, a family of scaffolding
proteins for organizing “preassembled signaling complexes” at the plasma membrane.  J.
Biol. Chem. 273: 5419–5422.
87. Schlegel A, Volonte D, Engelmann JA. (1999)
Crowded little caves: structure and function of
caveolae. Cell. Signal. 10: 457–463.
88. Müller G, Frick W. (1999) Signalling via caveolin: Involvement in the cross-talk between
phosphoinositolglycans and insulin.  Cell. Mol.
Life Sci. 56: 945–970.
89. Li S, Couet J, Lisanti MP. (1996) Src tyrosine
kinases, Galpha subunits, and H-Ras share
a common membrane-anchored scaffolding
protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases.  J. Biol. Chem. 272: 29182–
29190.
90. Couet J, Sargiacomo M, Lisanti MP. (1997) Interaction of a receptor tyrosine kinase, EGF-R,
with caveolins. Caveolin binding negatively
regulates tyrosine and serine/threonine kinase
activities. J. Biol. Chem. 272: 30429–30438.
91. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP.
(1997) Identification of peptide and protein
ligands for the caveolin-scaffolding domain. J.
Biol. Chem. 272: 6525–6533.
92. Pulido N, Casla A, Suarez A, Casanova B, Arri-
eta FJ, Rovira A. (1996) Sulphonylurea stimulates glucose uptake in rats through an ATPsensitive K

channel dependent mechanism.
Diabetologia 39: 22–27.
93. Shi H, Moustaid-Moussa N, Wilkison WO,
Zemel MB. (1999) Role of the sulfonylurea receptor in regulating human adipocyte metabolism. FASEB J. 13: 1833–1838.
94. Rajan A, Luo Z-T, Kahn BB, Comstock JP, Cushman SW, Boyd III AE. (1994) Do adipocytes
contain high affinity sulfonylurea receptors? Endocrinology 134: 1581–1588.
95. Draznin B, Sussman KE, Eckel RH, Kao M,
Yost T, Sherman NA. (1988) Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. J. Clin. Invest. 82: 1848–1852.
96. Draznin B, Kao M, Sussman KE. (1987) Insulin
and glyburide increase cytosolic free-Ca
2
concentration in isolated rat adipocytes.  Diabetes
36: 174–177.
97. Kim JH, Kiefer LL, Woychik RP, et al. (1997)
Agouti regulation of intracellular clacium. Role
of melanocortin receptor.  Am. J. Physiol. 272:
E379–E384.
98. Zemel MB, Kim LL, Woychik RP, et al. (1995)
Agouti regulation of intracellular calcium: role
in the insulin resistance of viable yellow mice.
Proc. Natl. Acad. Sci. U.S.A. 92: 4733–4737.
99. Gribble FM, Tucker SJ, Seino S, Ashcroft FM.
(1998) Tissue specificity of sulphonylureas:
studies on cloned cardiac and -cell KATP channels. Diabetes 47: 1412–1418.
100. Smits P, Thien T. (1995) Cardiovascular effects
of sulphonylurea derivatives. Implications for
the treatment of NIDDM. Diabetologia 38: 116–
122.
101. Leibowitz G, Cerasi E. (1996) Sulphonylurea
treatment of NIDDM patients with cardiovascular disease: a mixed blessing? Diabetologia 39:
503–515.
102. UKPDS. (1998) Intensive blood-glucose control with sulphonylureas or insulin compared
with conventional treatment and risk of complications in patients with Type II diabetes
(UKPDS 33). Lancet 352: 837–853.
103. Isomoto S, Kondo C, Yamada M. (1996) A novel
sulphonylurea receptor forms with BIR
(KIR6.2) a smooth muscle type of ATP-sensitive
K

channels. J. Biol. Chem. 271: 24321–24325.
104. Ämmälä C, Moorhouse A, Gribble FM. (1996)
Promiscuous coupling between the sulphonylurea receptor and inwardly-rectifying potassium channels. Nature 379: 545–548.
105. Geisen K, Hitzel V, Ökonomopulos R, Pünter J,
Weyer R, Summ H-D. (1985) Inhibition of
[
3
H]glibenclamide binding to sulfonylurea receptors by oral antidiabetics.  Drug Res. 35:
707–712.
106. Dunn-Meynell A, Rawson N, Levin B. (1998)
synthesis by insulin in human erythroleukemia cells requires the synthesis of
glycosyl-phosphatidylinositol.  Proc. Natl. Acad.
Sci. USA 91: 9665–9669.
121. Jones DR, Varela-Nieto I. (1998) The role of
glycosyl-phosphatidylinositol in signal transduction. Int. J. Biochem. Cell Biol. 30: 313–326.
122. Jones DR, Varela-Nieto I. (1999) Diabetes and
the role of inositol-containing lipids in insulin
signaling. Mol. Med. 5: 505–514.
123. Larner J, Huang LC. (1999) Identification of a
novel inositol glycan signaling pathway with
significant therapeutic relevance to insulin resistance: an insulin signaling model using both
tyrosine kinase and G-proteins. Diabetes Rev. V7
N3: 217–231.
124. Frick W, Bauer A, Bauer J, Wied S, Müller G.
(1998) Structure-activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action.  Biochemistry 38: 13421–
13436.
125. Frick W, Bauer A, Bauer J, Wied S, Müller G.
(1998) Insulin-mimetic signalling of synthetic phosphoinositolglycans in isolated rat
adipocytes. Biochem. J. 336: 163–181.
126. Müller G, Wied S, Piossek C, Bauer A, Bauer J,
Frick W. (1998) Convergence and divergence of
the signaling pathways for insulin and phosphoinositolglycans. Mol. Med. 4: 299–323.
127. Müller G, Wied S, Frick W. (2000) Cross talk of
pp125
FAK
and pp59
Lyn
non-receptor tyrosine
kinases to insulin-mimetic signaling in adipocytes. Mol. Cell. Biol. 20: 4708–4723.
128. Badian M, Korn A, Lehr K-H. (1994) Absolute
bioavailability of glimepiride (Amaryl registered) after oral administration.  Drug Metab.
Drug Interact. 11: 331–339.
129. Rosenkranz B, Profozic V, Metelko Z. (1996)
Pharmacokinetics and safety of glimepiride at
clinically effective doses in diabetic patients with
renal impairment. Diabetologia 39: 1617–1624.
130. Lehr KH, Damm P. (1990) Simultaneous determination of the sulfonylurea glimepiride and
its metabolites in human serum and urine by
107. Spanswick D, Smith M, Groppi V, Logam S,
Ashford ML. (1997) Leptin inhibits hypothalamic neurons by activation of ATP-sensitive
potassium channels. Nature 390: 521–525.
108. Harvey J, McKenna F, Herson PS, Spanswick
D, Ashford ML. (1997) Leptin activates ATPsensitive potassium channels in the rat insulinsecreting cell line, CRI-G1.  J. Physiol. 504:
527–535.
109. Considine RV, Caro JF. (1997) Leptin and the
regulation of body weight. Int. J. Biochem. Cell
Biol. 29: 1255–1272.
110. Tartaglia LA. (1997) The leptin receptor. J. Biol.
Chem. 272: 6093–6096.
111. Schwartz MW, Woods SC, Porte D, Seeley RJ,
Baskin DG. (2000) Central nervous system
control of food intake. Nature 404: 661–671.
112. Harvey J, Ashford ML. (1998) Diazoxide- and
leptin-activated K(ATP) currents exhibit differential sensitivity to englitazone and ciclazindol
in the rat CRI-G1 insulin-secreting cell line.
Brit. Pharmacol. 124: 1557–1565.
113. Harvey J, Ashford ML. (1998) Role of tyrosine
phosphorylation in leptin activation of ATPsensitive K

channels in the rat insulinoma
cell line CRI-G1. J. Physiol. 510: 47–61.
114. Harvey J, Ashford ML. (1998) Insulin occludes
leptin activation of ATP-sensitive K

channels
in rat CRI-G1 insulin secreting cells. J. Physiol.
511: 695–706.
115. Mastick CC, Brady MJ, Saltiel AR. (1995) Insulin stimulates the tyrosine phosphorylation
of caveolin. J. Cell Biol. 129: 1523–1531.
116. Saad MJA, Velloso LA, Carvalho CRO. (1995)
Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase
in rat heart. Biochem. J. 310: 741–744.
117. Kowalski-Chauvel A, Pradayrol L, Vaysse N,
Seva C. (1996) Gastrin stimulates tyrosine
phosphorylation of insulin receptor substrate 1
and its association with Grb2 and the phosphatidylinositol 3-kinase.  J. Biol. Chem. 271:
26356–26361.
118. Argetsinger LS, Hsu GW, Myers MG,
Billestrup N, White MF, Carter-Su C. (1995)
Growth hormone, interferon-, and leukemia
inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1.  J. Biol.
Chem. 270: 14685–14692.
119. Verdier F, Chretien S, Billat C, Gisselbrecht S,
Lacombe C, Mayeux P. (1997) Erythropoietin
induces the tyrosine phosphorylation of insulin receptor substrate-2.  J. Biol. Chem. 272:
26173–26178.
120. Lazar DF, Knez JJ, Medof ME, Cuatrecasas P,
Saltiel AR. (1994) Stimulation of glycogen
high-performance liquid chromatography after
pre-column derivatization.  J. Chromatogr. 526:
497–505.
131. Wernicke-Panten K, Haupt E, Pfeiffer C. (1994)
Early onset of pharmacodynamic effects of
glimepiride in type II diabetic patients [abstract]. Diabetologia 37 (Suppl. 1): 163.
132. Rosenstock J, Samols E, Muchmore DB. (1996)
Glimepiride, a new once-daily sulfonylurea: a
double-blind placebo-controlled study of
NIDDM patients. Diabetes Care 19: 1194–1199.
133. Sonnenberg GE, Garg DC, Weidler DJ. (1997)
Short-term comparison of once-versus twicedaily administration of glimepiride in patients
with non-insulin-dependent diabetes mellitus.
Ann. Pharmacother. 31: 671–676.
134. Geisen K, Vegh A, Krause E. (1996) Cardiovascular effects of conventional sulfonylureas and
glimepiride. Horm. Metab. Res. 28: 496–507.
135. Ballagi-Pordany G, Nemeth M, Aranyi Z. (1992)
Effect of glimepiride on the electrical activity of
isolated rabbit heart muscle.  Drug Res. 42:
111–113.
136. Müller G, Ertl J, Gerl M, Preibisch G. (1997)
Leptin impairs metabolic actions of insulin in
isolated rat adipocytes.  J. Biol. Chem. 272:
10585–10593.
137. Müller G, Wied S, Crecelius A, Kessler A, Eckel
J. (1997) Phosphoinositolglycan-peptides from
yeast potently induce metabolic insulin actions
in isolated rat adipocytes, cardiomyocytes, and
diaphragms. Endocrinology 138: 3459–3475.
138. Grynkiewicz G, Pocnic M, Tsien RY. (1985) A
new generation of Ca
2
indicators with greatly
improved fluorescent properties.  J. Biol. Chem.
260: 3440–3450.
139. Zerangue N, Schwappach B, Jan YN, Jan LY.
(1999) A new ER trafficking signal regulates
the subunit stoichiometry of plasma membrane
K(ATP) channels. Neuron 22: 537–548.
140. Müller G, Wied S, Welte S. (2000) Involvement
of caveolae in insulin-mimetic signaling by the
sulfonylurea Amaryl.  Chem. Phys. Lipids  7: 7–8
[abstract].
1. Aiman, R., In symp, “Ind. Drugs”, Bombay, 1961, 9:3.
2. Aiman, R., Indian J. Physiol. Pharmacol., 1970, 14 : 65-70.
3. Ajgaonkar, S.S., Nagarjun, 1960 – 61, 4(3) : 275 – 86.
4. Anjaneyalu, B., Babu, B., Rao, V., Ganguly, A.K., Manmade, A.H., Mohamed, P.A.,
Rahimtula, A.D., Saksena, A.K., Varde, D.S. and Vishwanathan, N., Ind. J. Chem., 1965,
3:257.
5. Anjaneyalu, A.S.R., and Rama Prasad, A.V., Phytochemistry, 1982a, 21(8) : 2057.
6. Anjaneyalu, A.S.R., and Rama Prasad, A.V., Ind. J. Chem., 1982b, 21B(b),530.
7. Anjaneyalu, A.S.R., and Rama Prasad, A.V., Phytochemistry, 1983, 22(4) : 993.
8. Apte, I.C., Vaishwanar, I.P., Khannade, S.S., and Jadhav, S.N., Indian Drugs, 1988, 25(11) :
461 – 463.
9. Arora, R.B., and Stephen, P.M., Sec. Biol. Chem. Ind. 1959, 30:76.
10. Asatoor, A.M., and King, E. J., Biochem. J., 1954, 56: (IV- X).
11. Atal, C.K., Srivastava, J.B., Wali, B.K., Chakravraty, R.S., Dhawan, B.N., and Rastogi, R.P.,
Ind. J. Exp. Biol., 1978, 16 : 330.
12. Bansal, R., Ahmad, N., Kidwai, J.R., J. Biochem. Biophys., 1981, 18:377.
13. Basu, N.K., and chawdhary, K.D., Curr. Sci., 1960, 29:36.
14. Blatter, E., Caius, J.F., and Mhaskar, K.S., In: Indian Medicinal Plants, Vol. III, II, Edition,
1930, 1625 – 1627, Lalit Mohan Basu, Allahabad, India.
15. Bhargava, K.K., Dayal, R. and Seshadri, T.R., Curr. Sci., 1974, 43(20 : 645.
16. Bhattacharjee, A.K. and Das, A.K., Quarter. Jour. Crude Res., 1969, 9:408.
17. Bose, B.C., Vijayvargi, R., and Bose, S.N., Ind. J. Med. Sci., 1956, 9(10): 642.
18. Bose, S.C., Gupta, S.S. and Trivedi, C.P., Ind. J. Med. Sci., 1956, 10(9) : 700.
19. Bramchari, H.D., and Augusti, K.J., J. Pharm & Pharmac., 1961, 13, 38.
20. Bramchari, H.D., and Augusti K.J., J. Pharm & Pharmac., 1962, 14,254.
21. Bramchari, H.D., and Augusti K.J., J. Pharm & Pharmac., 1962, 14, 617.
22. Casparie, A.F., and Miedema, R., Lancet, 1977, 11, 758 – 759.
23. Chakraborty, Ratna; Prasad, H.O., Studies on hypogycaemic effect of Indigenous plant
Azadirachta India A. Juss. in relation to other hypoglycaemic agent, paper presented in 79
Sci. Congress held at Aurangabad, 1992.
24. Chandola, H.M., Correlation of Prameha with diabetes mellitus and evaluation of the
response of C.tamala on glucose and Insulin metabolism, Ph.D., Thesis, M.D., (ayu), I.M.K.,
B.H.U., 1979.
25. Chandola, H.R., Tripathi, S.N., and Udupa, K.N., Ancient Sci. of Life, 1988 7(3&4) : 219 –
226.
26. Charaka, Samhita, Commentary by Chaturvedy, G.N. and Shastri, K.N., IX. Edition,
Chowkhamba Vidhyabhawan, Varanasi, 1980.
27. Chatterjee, K.P., Ind. J. Physiol. Pharmacol., 1963, 7:240.
28. Chaudhary, R.R., and Vohara, S.B., Plants with possible hypoglycaemic activity in :
Advances in Research in Indian Medicine, edited by K.N. Udupa, G. N. Chaturvedi and S. N.
Tripathi, Banaras Hindu University, Varansi, 1970, 57 – 75.
29. Chopra, R. N., Nayar, S.L., and Chopra, I.C., Glossary of Indian Medicinal Plants, CSIR,
New Delhi, India, 1956, pp 53.
30. Davis, R.E., and Nicol., D.J., Cong. Clin. Biochem, 1980, 80 – 85.
31. Day, J.F., Ingebrettsen, C.G., Ingebrettsen, W.R., Jr., Baynes, J.W. and Thopre, S.R.,
Diabetes, 1980, 27: 524 – 527.
32. Dhar, M.L., Dhawan, B.N., Prasad, C.R., Rastogi, R.P. Singh, K.K. and Tandon, J.S., Indian
J. Exp. Biol., 1974, 12 : 512.
33. Das, P.K., and Mishra, M.K., Ancient Sci. of Life, 1988, 8(1) : 60 – 67.
34. Dhawan, B.N., Patnaik, G.K., Rastogi, R.P., Singh, K.K., and Tandon, J.S., Ind. J. Exp. Biol.,
1977, 15 : 208.
35. Dwivedi, S., Chawaouria, J.P., Somani, P.N., and Udupa, K.N., Indian Drugs, 1987 24 (8) :
378.
36. Dwivedi, S. and Udupan N., Fitoterapia, 1989, 60 (5) : 413.
37. Folin, O, and Wu, H., J. Biol. Chem. 1920, 41, 367.
38. Gharpurey, K.G., Ind. Med. Gaz., 1926, 61, 155 (abstract).
39. Gracia, F., J. Philippines Med. Assoc., 1955, 31, 216.
40. Gracia, F., J. Philippines Med. Assoc., 1960,36, 836.
41. Gupta, D.R., and Agarwal, S.K., Sci. and Cult., 1970, 36 (5), 298.
42. Gupta, S.S., I.J. Physiol. Pharmacol., 1962, 6,23.
43. Gupta, S.S., Verma, C.L., Garg, V.P. and Khandelwal, P., Ind. J. Med. Res., 1967, 55, 754.
44. Handa, S.S., Chawla, A.S., Maninder, Fitoterapia, LX(3) ;195 -  224.
45. Hemadri, K., and S.S., Bhusan Rao., Indian Medicine, 1990, 2(1).
46. Hemadri, K., Sarma, C.R.P., and Rao, S.S., Ancient Sci. of Life, 1987, 6(3) : 167 – 186.
47. Hemadri, K., Sarma, C.R.P., and Rao, S.S., Ancient Sci. of Life, 1987, 7(1) : 55 – 60.
48. Henry, A.N., Kumari, G.R., and Chitra, V., Flora of Tamilnadu, India, Series 1, Analysis,
Vol.2, B.S.I., Coimbatore, India, 1987.
49. Herbert, V., Lau, K.S., Gottlieb, C.W., and Bleicher, S.J.,  J. Clin. Endocrinol., 1965, 25 :
1375 – 1384.
50. Hooper, D., J. Sec. Chem. Ind., 1887, 6, 380.
51. Hooper, D., Chem. News, 59, 159.
52. Israili, A.H., Nagarajun, 1977, 20(12), 1 – 10.
53. Jain, M.C, and Seshadri, T.R., Ind. J. Chem., 1975,13 (1), 20.
54. Jain, S.K., Banerjee, D.K., and Pal, D.C., Bull. Bot. Surv., India, 1973, 15 : 85 – 91
55. Jenkins, D.J.A., Br. Med. J., 1978, 2 : 1744.
56. Joslin, E.P., Root, H.F., White, P., and Marble, A., Treatment of Diabetes Mellitus, 10
th
ed.,
Leafbiger, 1959.
57. Kamboj, V.P., Ind. J. Med. Res., 1988, 87, 336.
58. Karnick, C.R., Acta Phytother. Amst, 1972, 19(8) : 141 – 149.
59. Kirtikar, K.R., and Basu, B.D., Indian Medicinal Plants, Vol I & II, Bishen Singh, Mahendra
Pal Singh, Dehradun, 1975.
60. Mathew, K.M.,  The flora of Tamilnadu, Carnatie, 3 parts.  The Rapinet Herbarium,
Trichirapalli, India, 1983.
61. Maya, S.J., Bibal, P.P., Mare, C., Pierre, B., C.R. Acad, Sci, Ser. (Fr.) 1967, 264, 1223.
62. Merelyn, A . Ma., Naughtrn, A. and Cameron, D.P., Clin, Chim., Acta, 1981, 115 :111 – 117.
63. Mhaskar, K.S., and Caius, J.F., Indian Medical Research Memories, 1930.
64. Mukerji, B., J. Sci, Industr, Res., 1957, 16A (Suppl), 1 – 18.
65. Mukherjee,S.K.,De, U.N. and Mukherjee, B., Indian Med.Res. Gaz., 3(1),(1963–64),97– 104.
66. Mukherjee, K., and Ray, L.M., Ind. J. Crude Drug Res., 1986, 24 (4), 187.
67. Murty, K.S., Rao, D.N., Rao, D.K., and Murty, L.B.C., Ind. J. Pharmac., 1978, 10 : 247.
68. Nagar, A., Gujral, V.K. and Gupta, S.R., Planta Med., 1979, 37(2), 183.
69. Nagar, A., Gujral, V.K. and Gupta, S.R., Phytochemistry, 1979, 18(7), 1245.
70. Nagaraju, N., and Rao., K.N., Ancient Sci, of Life, 1989, 9(1), 31- 35.
71. Nair, A.G.R., and Sankara, Subramaniyam, S.J., J. Sci. Indus. Res., 1962, 21 (b), 457.
72. Nair, B.R., and Santhakumari, G., Ancient Sci. of Life,  1986, 6(2), 80 – 84.
73. Nair, N.C., and Henry, A.N., Flora of Tamilnadu, India, Series 1, Analysis, Vol. I, B.S.I.,
Coimbatore, India, 1983.
74. Nadkarni, A.K., India Materia Medica, 1954, 281.  
75. Nagarajan, S., Jain, H.C., and G.S. Aulakh. In Cultivation and utilization of medicinal plants,
Regional Research Lab., CSIR, Jammu-Tawi, pp 877.
76. Nadkarni, K.M., Indian Materia Medica, (revised and enlarged edition by A.K. Nadkarni)
Vol. L, Popular Prakashna, Bombay, 1976.
77. Niebee, P., Clin. Chem. Acta,  1972, 42 : 399 – 403.
78. Pannerselvam, C., and Shanmugasundaram, K.R.,  J. Madras Univ.,  1978, (Section B), 41:
171- 183.
79. Pillai, N.R., and Shanta Kumari, G., Ind. J. Med. Res.,  1981, 74, 931.
80. Prabhakar, Y.S., and S. Kumar, Plant Med. Phytother, 1988, 22(1), 30.
81. Pathak, S.R., Upadhyaya, L. Singh, R.V., Dubey, G.P., and Udupa, K.N., Indian  Drugs,
1990, 27 (4), 221.
82. Power, F.B., and Tutin, F., In: Indian Materia Medica – revised and enlarged by Dr. A. K.
Nadkarni, III. Edn. Vol.I, 596 – 599, Popular book Depot, Bombay, 1904.
83. Rajaram Rao, M.R., Ambika, S.H., Gandhi, V.M., and Murthy, R.V., Ind. J. Pharm., 1966,
28 912), 345.
84. Rajendran, V.M., Metabolite and functional studies on the intestine in streptozotocin induced
diabetes controlled by Gymnema sylvestre R. Br. Doctoral Thesis, University of Madras.
85. Rajendran, V.M., and Shanmugasundaram, K.R., J. Madras Univ., 1980, Section B, 43 : 62-
69.
86. Ramachandan, R.L., Suryanaraynan, Murthy, P., Subba Rao, G.S.R., Sastry, C.S.P., and Rao,
K.V.J., Ind. J. Chem., 1970, 8(8) : 716.
87. Ramachandran, R.L., Suryanarayana, Murthy, P. Subba Rao., G.S.R., Sastry, C.S.P., and
Rao, K.V.J., Ind. J. Chem., 1970, 8(9) : 772.
88. Rao, Sahab, Rama Rao, M., Flowering Plants of Travancore, Govt. Press, Trivandrum, 1988.
89. Renu, Bansal, Nafesahmed, and Jalil, R., Kidwai, Ind. J. Biochem, Biophys. 1981, 18, 377.
90. Sankarasubramaniyam, S., and Nair, A.G.R., Curr. Sci., 1972, 42 (19) : 703.
91. Santhoshkumari, K.S. and Devi, K.S., Ancient Sci. of Life, 1990, 9(4) : 22 – 223.
92. Sastri, N.N., A dictionary of Indian raw materials and Industrial products, Vol. IV., CSIR,
Delhi, 1956.
93. Sengupta, P., and Dass, S.P., J. Ind. Chem. Soc., 1965, 42, 539.
94. Sepa, A.C., and Bose, S.N., J. Ind. Med. Assoc., 1956, 27, 388.
95. Seth, S.D.S., Arora, R.B. and Maurya, D.P.S., Ind. J. Pharm., 1972, 4(2), 130.
96. Shah, D.S., Ind. J. Med. Res., 1967, 55, 166.
97. Shanmugasundaram, K.R., Pannerselvam, C. Lalitha, T., and Ranibai, A.J., Arogya J. Health,
1981, 7, 38-60.
98. Sharaf, A.A., Hussein, A.M. Mansour, M.Y., Plants Medica, 1963, 11, 159.
99. Sharma, P.N., Shoeb, A., Kapil, R.S. and Popli, S.P., Ind. J. Chem., 1982, 21 B(3), 263.
100. Sharma, V.N., Sogani, R.K., and Arora R.B., Ind. J. Med. Res., 1960, 48, 471.
101. Shorti, D.S., Kelker, M., Desmukh, K., and Alman, R., Ind. J. Med. Res., 1963, 51, 464.
102. Siddiqui, S.A., Curr. Sci., 1942, 11, 278.
103.  Singh, T.N., Upadhyay, B.N., Tewari, C.M., Tripathi, S.N.,  Ancient Sci. of Life,
1985,5(1),9-16.
104. Standl, E., and Kolb, H.J., Diabetologia, 1973, 9 : 461 – 466.
105. Steinmetz, E.F., Acta Phytotherapeut., 1960, 7, 23.
106. Sushruta Samhita, Hindi commentary by Shastri, K.A., Chaukhambha Sanskrit Series, III,
edition, Varanasi, 1973.
107.  Svobada, G.H., Gorman, M., Root, M., Lloydia, 1964, 27, 361.
108.   Tettamanti, G., Bonali, F., Marchesini, S., and Zambothi, V., Biochem.  Biophyse Acta,
1973, 296, 160 – 170.
109.  Tiwari, A.K., Gode, J.D. and Dubey, G.P., Ind. Drugs, 1989, 26 (12), 664.
110. Tomoda, M., Shimizu, N., Oshima, Y., Takahashi, M., Murakami, M., Hikino, H., Planta
Medica, 1987, 8.
111.  Tripati, C.P., Tewari, C.M., Upadhyay, B.N., Singh, R. J., J. Res. Ind. Med., 1979, Homeo
& Yoga, 14 : 3
112.  Trivedi, C.P., Ind. J. Physiol. Pharmacol., 1963, 7, 11.
113.  Vad, B.G., Ind. J. Pharmac., 1961, 23, 115.
114.  Vaish, S.K., Ind. Sci., Congress Assoc., 1954, 230.
115.  Wagner, W.D., Annal. Biochem., 1979, 94, 394 – 397.
116. Yadav, B.L., Mathur, R., and Gupta, R.B., Probe, 1980, 19(3), 196.
117. Yus, D.K., Morris, K., Mo Lennon, S., and Turtle, J.R., Diabetes, 1980, 29 : 296 – 300.
(Contd.)

Comments

Popular posts from this blog

गुलसकरी के साथ प्रयोग की जाने वाली अमरकंटक की जड़ी-बूटियाँ:कुछ उपयोगी कड़ियाँ

कैंसर में कामराज, भोजराज और तेजराज, Paclitaxel के साथ प्रयोग करने से आयें बाज

भटवास का प्रयोग - किडनी के रोगों (Diseases of Kidneys) की पारम्परिक चिकित्सा (Traditional Healing)